52,704 research outputs found

    Morphing Contact Representations of Graphs

    Get PDF
    We consider the problem of morphing between contact representations of a plane graph. In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in the graph. In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type. We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property. Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs. We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs. As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the "top-most" triangle in both representations corresponds to the same vertex. This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set

    On Visibility Representations of Non-planar Graphs

    Get PDF
    A rectangle visibility representation (RVR) of a graph consists of an assignment of axis-aligned rectangles to vertices such that for every edge there exists a horizontal or vertical line of sight between the rectangles assigned to its endpoints. Testing whether a graph has an RVR is known to be NP-hard. In this paper, we study the problem of finding an RVR under the assumption that an embedding in the plane of the input graph is fixed and we are looking for an RVR that reflects this embedding. We show that in this case the problem can be solved in polynomial time for general embedded graphs and in linear time for 1-plane graphs (i.e., embedded graphs having at most one crossing per edge). The linear time algorithm uses a precise list of forbidden configurations, which extends the set known for straight-line drawings of 1-plane graphs. These forbidden configurations can be tested for in linear time, and so in linear time we can test whether a 1-plane graph has an RVR and either compute such a representation or report a negative witness. Finally, we discuss some extensions of our study to the case when the embedding is not fixed but the RVR can have at most one crossing per edge

    Straightening out planar poly-line drawings

    Full text link
    We show that any yy-monotone poly-line drawing can be straightened out while maintaining yy-coordinates and height. The width may increase much, but we also show that on some graphs exponential width is required if we do not want to increase the height. Likewise yy-monotonicity is required: there are poly-line drawings (not yy-monotone) that cannot be straightened out while maintaining the height. We give some applications of our result.Comment: The main result turns out to be known (Pach & Toth, J. Graph Theory 2004, http://onlinelibrary.wiley.com/doi/10.1002/jgt.10168/pdf

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure

    Convex-Arc Drawings of Pseudolines

    Get PDF
    A weak pseudoline arrangement is a topological generalization of a line arrangement, consisting of curves topologically equivalent to lines that cross each other at most once. We consider arrangements that are outerplanar---each crossing is incident to an unbounded face---and simple---each crossing point is the crossing of only two curves. We show that these arrangements can be represented by chords of a circle, by convex polygonal chains with only two bends, or by hyperbolic lines. Simple but non-outerplanar arrangements (non-weak) can be represented by convex polygonal chains or convex smooth curves of linear complexity.Comment: 11 pages, 8 figures. A preliminary announcement of these results was made as a poster at the 21st International Symposium on Graph Drawing, Bordeaux, France, September 2013, and published in Lecture Notes in Computer Science 8242, Springer, 2013, pp. 522--52

    Geodesic Deviation in Regge Calculus

    Get PDF
    Geodesic deviation is the most basic manifestation of the influence of gravitational fields on matter. We investigate geodesic deviation within the framework of Regge calculus, and compare the results with the continuous formulation of general relativity on two different levels. We show that the continuum and simplicial descriptions coincide when the cumulative effect of the Regge contributions over an infinitesimal element of area is considered. This comparison provides a quantitative relation between the curvature of the continuous description and the deficit angles of Regge calculus. The results presented might also be of help in developing generic ways of including matter terms in the Regge equations.Comment: 9 pages. Latex 2e with 5 EPS figures. Submitted to CQ

    Sample medium-term plans for mathematics

    Get PDF
    • …
    corecore