28,496 research outputs found

    Signalling Storms in 3G Mobile Networks

    Full text link
    We review the characteristics of signalling storms that have been caused by certain common apps and recently observed in cellular networks, leading to system outages. We then develop a mathematical model of a mobile user's signalling behaviour which focuses on the potential of causing such storms, and represent it by a large Markov chain. The analysis of this model allows us to determine the key parameters of mobile user device behaviour that can lead to signalling storms. We then identify the parameter values that will lead to worst case load for the network itself in the presence of such storms. This leads to explicit results regarding the manner in which individual mobile behaviour can cause overload conditions on the network and its signalling servers, and provides insight into how this may be avoided.Comment: IEEE ICC 2014 - Communications and Information Systems Security Symposiu

    Storms in mobile networks

    Get PDF
    Mobile networks are vulnerable to signalling attacks and storms caused by traffic that overloads the control plane through excessive signalling, which can be introduced via malware and mobile botnets. With the advent of machine-to-machine (M2M) communications over mobile networks, the potential for signalling storms increases due to the normally periodic nature of M2M traffic and the sheer number of communicating nodes. Several mobile network operators have also experienced signalling storms due to poorly designed applications that result in service outage. The radio resource control (RRC) protocol is particularly susceptible to such attacks, motivating this work within the EU FP7 NEMESYS project which presents simulations that clarify the temporal dynamics of user behavior and signalling, allowing us to suggest how such attacks can be detected and mitigated

    Detection and mitigation of signaling storms in mobile networks

    Get PDF
    Mobile Networks are subject to "signaling storms" launched by malware or apps, which overload the the bandwidth at the cell, the backbone signaling servers, and Cloud servers, and may also deplete the battery power of mobile devices. This paper reviews the subject and discusses a novel technique to detect and mitigate such signaling storms. Through a mathematical analysis we introduce a technique based on tracking time-out transitions in the signaling system that can substantially reduce both the number of misbehaving mobiles and the signaling overload in the backbone

    Performance analysis of mobile networks under signalling storms

    Get PDF
    There are numerous security challenges in cellular mobile networks, many of which originate from the Internet world. One of these challenges is to answer the problem with increasing rate of signalling messages produced by smart devices. In particular, many services in the Internet are provided through mobile applications in an unobstructed manner, such that users get an always connected feeling. These services, which usually come from instant messaging, advertising and social networking areas, impose significant signalling loads on mobile networks by frequent exchange of control data in the background. Such services and applications could be built intentionally or unintentionally, and result in denial of service attacks known as signalling attacks or storms. Negative consequences, among others, include degradations of mobile network’s services, partial or complete net- work failures, increased battery consumption for infected mobile terminals. This thesis examines the influence of signalling storms on different mobile technologies, and proposes defensive mechanisms. More specifically, using stochastic modelling techniques, this thesis first presents a model of the vulnerability in a single 3G UMTS mobile terminal, and studies the influence of the system’s internal parameters on stability under a signalling storm. Further on, it presents a queueing network model of the radio access part of 3G UMTS and examines the effect of the radio resource control (RRC) inactivity timers. In presence of an attack, the proposed dynamic setting of the timers manage to lower the signalling load in the network and to increase the threshold above which a network failure could happen. Further on, the network model is upgraded into a more generic and detailed model, represent different generations of mobile technologies. It is than used to compare technologies with dedicated and shared organisation of resource allocation, referred to as traditional and contemporary networks, using performance metrics such as: signalling and communication delay, blocking probability, signalling load on the network’s nodes, bandwidth holding time, etc. Finally, based on the carried analysis, two mechanisms are proposed for detection of storms in real time, based on counting of same-type bandwidth allocations, and usage of allocated bandwidth. The mechanisms are evaluated using discrete event simulation in 3G UMTS, and experiments are done combining the detectors with a simple attack mitigation approach.Open Acces

    Routing And Communication Path Mapping In VANETS

    Get PDF
    Vehicular ad-hoc network (VANET) has quickly become an important aspect of the intelligent transport system (ITS), which is a combination of information technology, and transport works to improve efficiency and safety through data gathering and dissemination. However, transmitting data over an ad-hoc network comes with several issues such as broadcast storms, hidden terminal problems and unreliability; these greatly reduce the efficiency of the network and hence the purpose for which it was developed. We therefore propose a system of utilising information gathered externally from the node or through the various layers of the network into the access layer of the ETSI communication stack for routing to improve the overall efficiency of data delivery, reduce hidden terminals and increase reliability. We divide route into segments and design a set of metric system to select a controlling node as well as procedure for data transfer. Furthermore we propose a system for faster data delivery based on priority of data and density of nodes from route information while developing a map to show the communication situation of an area. These metrics and algorithms will be simulated in further research using the NS-3 environment to demonstrate the effectiveness

    An efficient counter-based broadcast scheme for mobile ad hoc networks

    Get PDF
    In mobile ad hoc networks (MANETs), broadcasting plays a fundamental role, diffusing a message from a given source node to all the other nodes in the network. Flooding is the simplest and commonly used mechanism for broadcasting in MANETs, where each node retransmits every uniquely received message exactly once. Despite its simplicity, it however generates redundant rebroadcast messages which results in high contention and collision in the network, a phenomenon referred to as broadcast storm problem. Pure probabilistic approaches have been proposed to mitigate this problem inherent with flooding, where mobile nodes rebroadcast a message with a probability p which can be fixed or computed based on the local density. However, these approaches reduce the number of rebroadcasts at the expense of reachability. On the other hand, counter-based approaches inhibit a node from broadcasting a packet based on the number of copies of the broadcast packet received by the node within a random access delay time. These schemes achieve better throughput and reachability, but suffer from relatively longer delay. In this paper, we propose an efficient broadcasting scheme that combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Simulation results reveal that the new scheme achieves superior performance in terms of saved-rebroadcast, reachability and latency
    • …
    corecore