675 research outputs found

    Agent-mediated shared conceptualizations in tagging services

    Get PDF
    Some of the most remarkable innovative technologies from the Web 2.0 are the collaborative tagging systems. They allow the use of folksonomies as a useful structure for a number of tasks in the social web, such as navigation and knowledge organization. One of the main deficiencies comes from the tagging behaviour of different users which causes semantic heterogeneity in tagging. As a consequence a user cannot benefit from the adequate tagging of others. In order to solve the problem, an agent-based reconciliation knowledge system, based on Formal Concept Analysis, is applied to facilitate the semantic interoperability between personomies. This article describes experiments that focus on conceptual structures produced by the system when it is applied to a collaborative tagging service, Delicious. Results will show the prevalence of shared tags in the sharing of common resources in the reconciliation process.Ministerio de Ciencia e Innovación TIN2009-09492Ministerio de Ciencia e Innovación TIN2010-20967-C04-0

    Transactional Consistency and Automatic Management in an Application Data Cache

    Get PDF
    http://www.usenix.org/events/osdi10/tech/techAbstracts.html#PortsDistributed in-memory application data caches like memcached are a popular solution for scaling database-driven web sites. These systems are easy to add to existing deployments, and increase performance significantly by reducing load on both the database and application servers. Unfortunately, such caches do not integrate well with the database or the application. They cannot maintain transactional consistency across the entire system, violating the isolation properties of the underlying database. They leave the application responsible for locating data in the cache and keeping it up to date, a frequent source of application complexity and programming errors. Addressing both of these problems, we introduce a transactional cache, TxCache, with a simple programming model. TxCache ensures that any data seen within a transaction, whether it comes from the cache or the database, reflects a slightly stale but consistent snapshot of the database. TxCache makes it easy to add caching to an application by simply designating functions as cacheable; it automatically caches their results, and invalidates the cached data as the underlying database changes. Our experiments found that adding TxCache increased the throughput of a web application by up to 5.2×, only slightly less than a non-transactional cache, showing that consistency does not have to come at the price of performance

    Provenance-Aware Sensor Data Storage

    Get PDF
    Sensor network data has both historical and realtime value. Making historical sensor data useful, in particular, requires storage, naming, and indexing. Sensor data presents new challenges in these areas. Such data is location-specific but also distributed; it is collected in a particular physical location and may be most useful there, but it has additional value when combined with other sensor data collections in a larger distributed system. Thus, arranging location-sensitive peer-to-peer storage is one challenge. Sensor data sets do not have obvious names, so naming them in a globally useful fashion is another challenge. The last challenge arises from the need to index these sensor data sets to make them searchable. The key to sensor data identity is provenance, the full history or lineage of the data. We show how provenance addresses the naming and indexing issues and then present a research agenda for constructing distributed, indexed repositories of sensor data.Engineering and Applied Science

    Provenance-Aware Sensor Data Storage

    Get PDF
    Sensor network data has both historical and realtime value. Making historical sensor data useful, in particular, requires storage, naming, and indexing. Sensor data presents new challenges in these areas. Such data is location-specific but also distributed; it is collected in a particular physical location and may be most useful there, but it has additional value when combined with other sensor data collections in a larger distributed system. Thus, arranging location-sensitive peer-to-peer storage is one challenge. Sensor data sets do not have obvious names, so naming them in a globally useful fashion is another challenge. The last challenge arises from the need to index these sensor data sets to make them searchable. The key to sensor data identity is provenance, the full history or lineage of the data. We show how provenance addresses the naming and indexing issues and then present a research agenda for constructing distributed, indexed repositories of sensor data.Engineering and Applied Science

    LINC: A Compact Yet Powerful Coordination Environment

    Get PDF
    International audienceThis paper presents LINC, a coordination programming environment. It is an evolution of earlier middlewares (the Coordination Language Facility (CLF) and Stitch). The aim is to provide a more flexible and expressive language correcting several of their limitations and an improved run-time environment. LINC provides a compact yet powerful coordination language and an optimised run-time which executes rules. This paper describes the intrinsic properties brought by the LINC environment and how it helps the coordination aspects in a distributed system. This paper also emphasises on the reflexivity of LINC and its usage at system level. Finally, it illustrates through several case studies, how LINC can manage a wide range of application domains

    The {RDF}-3X Engine for Scalable Management of {RDF} Data

    Get PDF
    RDF is a data model for schema-free structured information that is gaining momentum in the context of Semantic-Web data, life sciences, and also Web 2.0 platforms. The ``pay-as-you-go'' nature of RDF and the flexible pattern-matching capabilities of its query language SPARQL entail efficiency and scalability challenges for complex queries including long join paths. This paper presents the RDF-3X engine, an implementation of SPARQL that achieves excellent performance by pursuing a RISC-style architecture with streamlined indexing and query processing. The physical design is identical for all RDF-3X databases regardless of their workloads, and completely eliminates the need for index tuning by exhaustive indexes for all permutations of subject-property-object triples and their binary and unary projections. These indexes are highly compressed, and the query processor can aggressively leverage fast merge joins with excellent performance of processor caches. The query optimizer is able to choose optimal join orders even for complex queries, with a cost model that includes statistical synopses for entire join paths. Although RDF-3X is optimized for queries, it also provides good support for efficient online updates by means of a staging architecture: direct updates to the main database indexes are deferred, and instead applied to compact differential indexes which are later merged into the main indexes in a batched manner. Experimental studies with several large-scale datasets with more than 50 million RDF triples and benchmark queries that include pattern matching, manyway star-joins, and long path-joins demonstrate that RDF-3X can outperform the previously best alternatives by one or two orders of magnitude
    • …
    corecore