3,055 research outputs found

    Considering Pigeons for Carrying Delay Tolerant Networking based Internet traffic in Developing Countries

    Get PDF
    There are many regions in the developing world that suffer from poor infrastructure and lack of connection to the Internet and Public Switched Telephone Networks (PSTN). Delay Tolerant Networking (DTN) is a technology that has been advocated for providing store-and-forward network connectivity in these regions over the past few years. DTN often relies on human mobility in one form or another to support transportation of DTN data. This presents a socio-technical problem related to organizing how the data should be transported. In some situations the demand for DTN traffic can exceed that which is possible to support with human mobility, so alternative mechanisms are needed. In this paper we propose using live carrier pigeons (columba livia) to transport DTN data. Carrier pigeons have been used for transporting packets of information for a long time, but have not yet been seriously considered for transporting DTN traffic. We provide arguements that this mode of DTN data transport provides promise, and should receive attention from research and development projects. We provide an overview of pigeon characteristics to analyze the feasibility of using them for data transport, and present simulations of a DTN network that utilizes pigeon transport in order to provide an initial investigation into expected performance characteristics

    Survey on Encryption Techniques in Delay and Disruption Tolerant Network

    Full text link
    Delay and disruption tolerant network (DTN) is used for long area communication in computer network, where there is no direct connection between the sender and receiver and there was no internet facility. Delay tolerant network generally perform store and forward techniques as a result intermediate node can view the message, the possible solution is using encryption techniques to protect the message. Starting stages of DTN RSA, DES, 3DES encryption algorithms are used but now a day\u27s attribute based encryption (ABE) techniques are used. Attribute based encryption technique can be classified in to two, key policy attribute based encryption (KPABE) and cipher policy attribute based encryption (CPABE). In this paper we perform a categorized survey on different encryption techniques presents in delay tolerant networks. This categorized survey is very helpful for researchers to propose modified encryption techniques. Finally the paper compares the performance and effectiveness of different encryption algorithms

    Performance of Implementation IBR-DTN and Batman-Adv Routing Protocol in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks is a network which has high mobility and flexibility network. In Wireless mesh networks nodes are free to move and able to automatically build a network connection with other nodes. High mobility, heterogeneous condition and intermittent network connectivity cause data packets drop during wireless communication and it becomes a problem in the wireless mesh networks. This condition can happen because wireless mesh networks use connectionless networking type such as IP protocol which it is not tolerant to delay. To solve this condition it is needed a technology to keep data packets when the network is disconnect. Delay tolerant technology is a technology that provides store and forward mechanism and it can prevent packet data dropping during communication. In our research, we proposed a test bed wireless mesh networks implementation by using proactive routing protocol and combining with delay tolerant technology. We used Batman-adv routing protocol and IBR-DTN on our research. We measured some particular performance aspect of networking such as packet loss, delay, and throughput of the network. We identified that delay tolerant could keep packet data from dropping better than current wireless mesh networks in the intermittent network condition. We also proved that IBR-DTN and Batman-adv could run together on the wireless mesh networks. In The experiment throughput test result of IBR-DTN was higher than Current TCP on the LoS (Line of Side) and on environment with obstacle.Keywords: Delay Tolerant, IBR-DTN, Wireless Mesh, Batman-adv, Performanc

    Routing in a many-to-one communication scenario in a realistic VDTN

    Get PDF
    In this paper, we evaluate and compare the performance of different routing protocols in a many-to-one communication within a Vehicular Delay Tolerant Network (VDTN). Seven groups with three stationary sensor nodes sense the temperature, humidity and wind speed and send these data to a stationary destination node that collect them for statistical and data analysis purposes. Vehicles moving in Tirana city roads in Albania during the opportunistic contacts will exchange the sensed data to destination node. The simulations are conducted with the Opportunistic Network Environment (ONE) simulator. For the simulations we considered two different scenarios where the distance of the source nodes from the destination is short and long. For both scenarios the effect of node density, ttl and node movement model is evaluated. The performance is analyzed using delivery probability, overhead ratio, average latency, average number of hops and average buffer time metrics. The simulation results show that the increase of node density increases the delivery probability for all protocols and both scenarios, and better results are achieved when shortest-path map-based movement model is used. The increase of ttl slightly affects the performance of all protocols. By increasing the distance between source nodes and destination node, delivery probability is decreased almost 10% for all protocols, the overhead for sprayandwait protocol does not change, but for other protocols is slightly increased and the average number of hops and average latency is increased.Peer ReviewedPostprint (author's final draft

    A DTN Routing Scheme Based on Publish/Subscribe Model

    Get PDF

    HYMAD: Hybrid DTN-MANET Routing for Dense and Highly Dynamic Wireless Networks

    Full text link
    In this paper we propose HYMAD, a Hybrid DTN-MANET routing protocol which uses DTN between disjoint groups of nodes while using MANET routing within these groups. HYMAD is fully decentralized and only makes use of topological information exchanges between the nodes. We evaluate the scheme in simulation by replaying real life traces which exhibit this highly dynamic connectivity. The results show that HYMAD outperforms the multi-copy Spray-and-Wait DTN routing protocol it extends, both in terms of delivery ratio and delay, for any number of message copies. Our conclusion is that such a Hybrid DTN-MANET approach offers a promising venue for the delivery of elastic data in mobile ad-hoc networks as it retains the resilience of a pure DTN protocol while significantly improving performance.Comment: 7 pages, 6 figure

    SocialDTN: A DTN implementation for Digital and Social Inclusion

    Full text link
    Despite of the importance of access to computers and to the Internet for the development of people and their inclusion in society, there are people that still suffer with digital divide and social exclusion. Delay/Disruption-Tolerant Networking (DTN) can help the digital/social inclusion of these people as it allows opportunistic and asynchronous communication, which does not depend upon networking infrastructure. We introduce SocialDTN, an implementation of the DTN architecture for Android devices that operates over Bluetooth, taking advantages of the social daily routines of users. As we want to exploit the social proximity and interactions existing among users, SocialDTN includes a social-aware opportunistic routing proposal, dLife, instead of the well-known (but social-oblivious) PROPHET. Simulations show the potential of dLife for our needs. Additionally, some preliminary results from field experimentations are presented.Comment: 3 pages, 4 figure

    Orion Routing Protocol for Delay-Tolerant Networks

    Full text link
    In this paper, we address the problem of efficient routing in delay tolerant network. We propose a new routing protocol dubbed as ORION. In ORION, only a single copy of a data packet is kept in the network and transmitted, contact by contact, towards the destination. The aim of the ORION routing protocol is twofold: on one hand, it enhances the delivery ratio in networks where an end-to-end path does not necessarily exist, and on the other hand, it minimizes the routing delay and the network overhead to achieve better performance. In ORION, nodes are aware of their neighborhood by the mean of actual and statistical estimation of new contacts. ORION makes use of autoregressive moving average (ARMA) stochastic processes for best contact prediction and geographical coordinates for optimal greedy data packet forwarding. Simulation results have demonstrated that ORION outperforms other existing DTN routing protocols such as PRoPHET in terms of end-to-end delay, packet delivery ratio, hop count and first packet arrival
    corecore