194 research outputs found

    The Effect Of Hot Spots On The Performance Of Mesh--Based Networks

    Get PDF
    Direct network performance is affected by different design parameters which include number of virtual channels, number of ports, routing algorithm, switching technique, deadlock handling technique, packet size, and buffer size. Another factor that affects network performance is the traffic pattern. In this thesis, we study the effect of hotspot traffic on system performance. Specifically, we study the effect of hotspot factor, hotspot number, and hot spot location on the performance of mesh-based networks. Simulations are run on two network topologies, both the mesh and torus. We pay more attention to meshes because they are widely used in commercial machines. Comparisons between oblivious wormhole switching and chaotic packet switching are reported. Overall packet switching proved to be more efficient in terms of throughput when compared to wormhole switching. In the case of uniform random traffic, it is shown that the differences between chaotic and oblivious routing are indistinguishable. Networks with low number of hotspots show better performance. As the number of hotspots increases network latency tends to increase. It is shown that when the hotspot factor increases, performance of packet switching is better than that of wormhole switching. It is also shown that the location of hotspots affects network performance particularly with the oblivious routers since their achieved latencies proved to be more vulnerable to changes in the hotspot location. It is also shown that the smaller the size of the network the earlier network saturation occurs. Further, it is shown that the chaos router’s adaptivity is useful in this case. Finally, for tori, performance is not greatly affected by hotspot presence. This is mostly due to the symmetric nature of tori

    Constructing virtual 5-dimensional tori out of lower-dimensional network cards

    Full text link
    [EN] In the Top500 and Graph500 lists of the last years, some of the most powerful systems implement a torus topology to interconnect themillions of computing nodes they include. Some of these torus networks are of five or six dimensions, which implies an additional difficulty as the node degree increases. In previous works, we proposed and evaluated the nD Twin (nDT) torus topology to virtually increase the dimensions a torus is able to implement. We showed that this new topology reduces the distances between nodes, increasing, therefore, global network performance. In this work, we present how to build a 5DT torus network using a specific commercial 6-port network card (EXTOLL card) to interconnect those nodes. We show, using the same number of cards, that the performance of the 5DT torus network we are able to implement using our proposal is higher than the performance of the 3D torus network for the same number of compute nodes.Spanish MINECO; European Commission, Grant/Award Number: TIN2015-66972-C5-1-R and TIN2015-66972-C5-2-R; JCCM, Grant/Award Number: PEII-2014-028-P; Spanish MICINN, Grant/Award Number: FJCI-2015-26080Andújar-Muñoz, FJ.; Villar, JA.; Sanchez Garcia, JL.; Alfaro Cortes, FJ.; Duato Marín, JF.; Fröning, H. (2017). Constructing virtual 5-dimensional tori out of lower-dimensional network cards. Concurrency and Computation Practice and Experience. 1-17. https://doi.org/10.1002/cpe.4361S11

    On the design of a high-performance adaptive router for CC-NUMA multiprocessors

    Get PDF
    Copyright © 2003 IEEEThis work presents the design and evaluation of an adaptive packet router aimed at supporting CC-NUMA traffic. We exploit a simple and efficient packet injection mechanism to avoid deadlock, which leads to a fully adaptive routing by employing only three virtual channels. In addition, we selectively use output buffers for implementing the most utilized virtual paths in order to reduce head-of-line blocking. The careful implementation of these features has resulted in a good trade off between network performance and hardware cost. The outcome of this research is a High-Performance Adaptive Router (HPAR), which adequately balances the needs of parallel applications: minimal network latency at low loads and high throughput at heavy loads. The paper includes an evaluation process in which HPAR is compared with other adaptive routers using FIFO input buffering, with or without additional virtual channels to reduce head-of-line blocking. This evaluation contemplates both the VLSI costs of each router and their performance under synthetic and real application workloads. To make the comparison fair, all the routers use the same efficient deadlock avoidance mechanism. In all the experiments, HPAR exhibited the best response among all the routers tested. The throughput gains ranged from 10 percent to 40 percent in respect to its most direct rival, which employs more hardware resources. Other results shown that HPAR achieves up to 83 percent of its theoretical maximum throughput under random traffic and up to 70 percent when running real applications. Moreover, the observed packet latencies were comparable to those exhibited by simpler routers. Therefore, HPAR can be considered as a suitable candidate to implement packet interchange in next generations of CC-NUMA multiprocessors.Valentín Puente, José-Ángel Gregorio, Ramón Beivide, and Cruz Iz

    On the Potential of NoC Virtualization for Multicore Chips

    Full text link
    corecore