4,065 research outputs found

    Representing and Reasoning on Conceptual Queries Over Image Databases

    Get PDF
    The problem of content management of multimedia data types (e.g., image, video, graphics) is becoming increasingly important with the development of advanced multimedia applications. Traditional database management systems are inadequate for the handling of such data types. They require new techniques for query formulation, retrieval, evaluation, and navigation. In this paper we develop a knowledge-based framework for modeling and retrieving image data by content. To represent the various aspects of an image object's characteristics, we propose a model which consists of three layers: (1) Feature and Content Layer, intended to contain image visual features such as contours, shapes,etc.; (2) Object Layer, which provides the (conceptual) content dimension of images; and (3) Schema Layer, which contains the structured abstractions of images, i.e., a general schema about the classes of objects represented in the object layer. We propose two abstract languages on the basis of description logics: one for describing knowledge of the object and schema layers, and the other, more expressive, for making queries. Queries can refer to the form dimension (i.e., information of the Feature and Content Layer) or to the content dimension (i.e., information of the Object Layer). These languages employ a variable free notation, and they are well suited for the design, verification and complexity analysis of algorithms. As the amount of information contained in the previous layers may be huge and operations performed at the Feature and Content Layer are time-consuming, resorting to the use of materialized views to process and optimize queries may be extremely useful. For that, we propose a formal framework for testing containment of a query in a view expressed in our query language. The algorithm we propose is sound and complete and relatively efficient.This is an extended version of the article in: Eleventh International Symposium on Methodologies for Intelligent Systems, Warsaw, Poland, 1999

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    Modeling image databases using Xml schema

    Full text link
    This thesis presents a model for still images in order to support content-based querying and browsing by hierarchical tree structures and object relational graphs. We use the extensible markup language (XML) schema to illustrate and exemplify the proposed model because of its interoperability and flexibility advantages. Of primary interest is the notion of complex types and referential integrity to fully describe the physical and semantic properties of images. XQuery is used to support query processing. We further show how these complex types of XML schema can be used to overcome the shortcomings of reported image database descriptions in the literature

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Image indexing and retrieval using formal concept analysis.

    Get PDF

    Video Analysis and Indexing

    Get PDF

    An object-based approach to retrieval of image and video content

    Get PDF
    Promising new directions have been opened up for content-based visual retrieval in recent years. Object-based retrieval which allows users to manipulate video objects as part of their searching and browsing interaction, is one of these. It is the purpose of this thesis to constitute itself as a part of a larger stream of research that investigates visual objects as a possible approach to advancing the use of semantics in content-based visual retrieval. The notion of using objects in video retrieval has been seen as desirable for some years, but only very recently has technology started to allow even very basic object-location functions on video. The main hurdles to greater use of objects in video retrieval are the overhead of object segmentation on large amounts of video and the issue of whether objects can actually be used efficiently for multimedia retrieval. Despite this, there are already some examples of work which supports retrieval based on video objects. This thesis investigates an object-based approach to content-based visual retrieval. The main research contributions of this work are a study of shot boundary detection on compressed domain video where a fast detection approach is proposed and evaluated, and a study on the use of objects in interactive image retrieval. An object-based retrieval framework is developed in order to investigate object-based retrieval on a corpus of natural image and video. This framework contains the entire processing chain required to analyse, index and interactively retrieve images and video via object-to-object matching. The experimental results indicate that object-based searching consistently outperforms image-based search using low-level features. This result goes some way towards validating the approach of allowing users to select objects as a basis for searching video archives when the information need dictates it as appropriate
    corecore