49,183 research outputs found

    Arctic Standards: Recommendations on Oil Spill Prevention, Response, and Safety in the U.S. Arctic Ocean

    Get PDF
    Oil spilled in Arctic waters would be particularly difficult to remove. Current technology has not been proved to effectively clean up oil when mixed with ice or when trapped under ice. An oil spill would have a profoundly adverse impact on the rich and complex ecosystem found nowhere else in the United States. The Arctic Ocean is home to bowhead, beluga, and gray whales; walruses; polar bears; and other magnificent marine mammals, as well as millions of migratory birds. A healthy ocean is important for these species and integral to the continuation of hunting and fishing traditions practiced by Alaska Native communities for thousands of years.To aid the United States in its efforts to modernize Arctic technology and equipment standards, this report examines the fierce Arctic conditions in which offshore oil and gas operations could take place and then offers a summary of key recommendations for the Interior Department to consider as it develops world-class, Arctic-specific regulatory standards for these activities. Pew's recommendations call for improved technology,equipment, and procedural requirements that match the challenging conditions in the Arctic and for full public participation and transparency throughout the decision-making process. Pew is not opposed to offshore drilling, but a balance must be achieved between responsible energy development and protection of the environment.It is essential that appropriate standards be in place for safety and for oil spill prevention and response in this extreme, remote, and vulnerable ecosystem. This report recommends updating regulations to include Arctic specific requirements and codifying temporary guidance into regulation. The appendixes to this report provide substantially more detail on the report's recommendations, including technical background documentation and additional referenced materials. Please refer to the full set of appendixes for a complete set of recommendations. This report and its appendixes offer guidelines for responsible hydrocarbon development in the U.S. Arctic Ocean

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Study of sample drilling techniques for Mars sample return missions

    Get PDF
    To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed

    Data Warehouse Design and Management: Theory and Practice

    Get PDF
    The need to store data and information permanently, for their reuse in later stages, is a very relevant problem in the modern world and now affects a large number of people and economic agents. The storage and subsequent use of data can indeed be a valuable source for decision making or to increase commercial activity. The next step to data storage is the efficient and effective use of information, particularly through the Business Intelligence, at whose base is just the implementation of a Data Warehouse. In the present paper we will analyze Data Warehouses with their theoretical models, and illustrate a practical implementation in a specific case study on a pharmaceutical distribution companyData warehouse, database, data model.

    On-Demand Big Data Integration: A Hybrid ETL Approach for Reproducible Scientific Research

    Full text link
    Scientific research requires access, analysis, and sharing of data that is distributed across various heterogeneous data sources at the scale of the Internet. An eager ETL process constructs an integrated data repository as its first step, integrating and loading data in its entirety from the data sources. The bootstrapping of this process is not efficient for scientific research that requires access to data from very large and typically numerous distributed data sources. a lazy ETL process loads only the metadata, but still eagerly. Lazy ETL is faster in bootstrapping. However, queries on the integrated data repository of eager ETL perform faster, due to the availability of the entire data beforehand. In this paper, we propose a novel ETL approach for scientific data integration, as a hybrid of eager and lazy ETL approaches, and applied both to data as well as metadata. This way, Hybrid ETL supports incremental integration and loading of metadata and data from the data sources. We incorporate a human-in-the-loop approach, to enhance the hybrid ETL, with selective data integration driven by the user queries and sharing of integrated data between users. We implement our hybrid ETL approach in a prototype platform, Obidos, and evaluate it in the context of data sharing for medical research. Obidos outperforms both the eager ETL and lazy ETL approaches, for scientific research data integration and sharing, through its selective loading of data and metadata, while storing the integrated data in a scalable integrated data repository.Comment: Pre-print Submitted to the DMAH Special Issue of the Springer DAPD Journa

    Performance Characterization of In-Memory Data Analytics on a Modern Cloud Server

    Full text link
    In last decade, data analytics have rapidly progressed from traditional disk-based processing to modern in-memory processing. However, little effort has been devoted at enhancing performance at micro-architecture level. This paper characterizes the performance of in-memory data analytics using Apache Spark framework. We use a single node NUMA machine and identify the bottlenecks hampering the scalability of workloads. We also quantify the inefficiencies at micro-architecture level for various data analysis workloads. Through empirical evaluation, we show that spark workloads do not scale linearly beyond twelve threads, due to work time inflation and thread level load imbalance. Further, at the micro-architecture level, we observe memory bound latency to be the major cause of work time inflation.Comment: Accepted to The 5th IEEE International Conference on Big Data and Cloud Computing (BDCloud 2015

    Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources

    Get PDF
    Apache Calcite is a foundational software framework that provides query processing, optimization, and query language support to many popular open-source data processing systems such as Apache Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite's architecture consists of a modular and extensible query optimizer with hundreds of built-in optimization rules, a query processor capable of processing a variety of query languages, an adapter architecture designed for extensibility, and support for heterogeneous data models and stores (relational, semi-structured, streaming, and geospatial). This flexible, embeddable, and extensible architecture is what makes Calcite an attractive choice for adoption in big-data frameworks. It is an active project that continues to introduce support for the new types of data sources, query languages, and approaches to query processing and optimization.Comment: SIGMOD'1

    The IceCube Neutrino Observatory: Instrumentation and Online Systems

    Get PDF
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review and proofin

    Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    Get PDF
    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed
    corecore