11,281 research outputs found

    Fingerprinting with Minimum Distance Decoding

    Full text link
    This work adopts an information theoretic framework for the design of collusion-resistant coding/decoding schemes for digital fingerprinting. More specifically, the minimum distance decision rule is used to identify 1 out of t pirates. Achievable rates, under this detection rule, are characterized in two distinct scenarios. First, we consider the averaging attack where a random coding argument is used to show that the rate 1/2 is achievable with t=2 pirates. Our study is then extended to the general case of arbitrary tt highlighting the underlying complexity-performance tradeoff. Overall, these results establish the significant performance gains offered by minimum distance decoding as compared to other approaches based on orthogonal codes and correlation detectors. In the second scenario, we characterize the achievable rates, with minimum distance decoding, under any collusion attack that satisfies the marking assumption. For t=2 pirates, we show that the rate 1−H(0.25)≈0.1881-H(0.25)\approx 0.188 is achievable using an ensemble of random linear codes. For t≥3t\geq 3, the existence of a non-resolvable collusion attack, with minimum distance decoding, for any non-zero rate is established. Inspired by our theoretical analysis, we then construct coding/decoding schemes for fingerprinting based on the celebrated Belief-Propagation framework. Using an explicit repeat-accumulate code, we obtain a vanishingly small probability of misidentification at rate 1/3 under averaging attack with t=2. For collusion attacks which satisfy the marking assumption, we use a more sophisticated accumulate repeat accumulate code to obtain a vanishingly small misidentification probability at rate 1/9 with t=2. These results represent a marked improvement over the best available designs in the literature.Comment: 26 pages, 6 figures, submitted to IEEE Transactions on Information Forensics and Securit

    Decoder-in-the-Loop: Genetic Optimization-based LDPC Code Design

    Get PDF
    LDPC code design tools typically rely on asymptotic code behavior and are affected by an unavoidable performance degradation due to model imperfections in the short length regime. We propose an LDPC code design scheme based on an evolutionary algorithm, the Genetic Algorithm (GenAlg), implementing a "decoder-in-the-loop" concept. It inherently takes into consideration the channel, code length and the number of iterations while optimizing the error-rate of the actual decoder hardware architecture. We construct short length LDPC codes (i.e., the parity-check matrix) with error-rate performance comparable to, or even outperforming that of well-designed standardized short length LDPC codes over both AWGN and Rayleigh fading channels. Our proposed algorithm can be used to design LDPC codes with special graph structures (e.g., accumulator-based codes) to facilitate the encoding step, or to satisfy any other practical requirement. Moreover, GenAlg can be used to design LDPC codes with the aim of reducing decoding latency and complexity, leading to coding gains of up to 0.3250.325 dB and 0.80.8 dB at BLER of 10−510^{-5} for both AWGN and Rayleigh fading channels, respectively, when compared to state-of-the-art short LDPC codes. Also, we analyze what can be learned from the resulting codes and, as such, the GenAlg particularly highlights design paradigms of short length LDPC codes (e.g., codes with degree-1 variable nodes obtain very good results).Comment: in IEEE Access, 201

    Analysis of Quasi-Cyclic LDPC codes under ML decoding over the erasure channel

    Get PDF
    In this paper, we show that Quasi-Cyclic LDPC codes can efficiently accommodate the hybrid iterative/ML decoding over the binary erasure channel. We demonstrate that the quasi-cyclic structure of the parity-check matrix can be advantageously used in order to significantly reduce the complexity of the ML decoding. This is achieved by a simple row/column permutation that transforms a QC matrix into a pseudo-band form. Based on this approach, we propose a class of QC-LDPC codes with almost ideal error correction performance under the ML decoding, while the required number of row/symbol operations scales as kkk\sqrt{k}, where kk is the number of source symbols.Comment: 6 pages, ISITA1

    Low-Latency Short-Packet Transmissions: Fixed Length or HARQ?

    Get PDF
    We study short-packet communications, subject to latency and reliability constraints, under the premises of limited frequency diversity and no time diversity. The question addressed is whether, and when, hybrid automatic repeat request (HARQ) outperforms fixed-blocklength schemes with no feedback (FBL-NF) in such a setting. We derive an achievability bound for HARQ, under the assumption of a limited number of transmissions. The bound relies on pilot-assisted transmission to estimate the fading channel and scaled nearest-neighbor decoding at the receiver. We compare our achievability bound for HARQ to stateof-the-art achievability bounds for FBL-NF communications and show that for a given latency, reliability, number of information bits, and number of diversity branches, HARQ may significantly outperform FBL-NF. For example, for an average latency of 1 ms, a target error probability of 10^-3, 30 information bits, and 3 diversity branches, the gain in energy per bit is about 4 dB.Comment: 6 pages, 5 figures, accepted to GLOBECOM 201
    • …
    corecore