85,157 research outputs found

    A distributed alerting service for open digital library software

    Get PDF
    Alerting for Digital Libraries (DL) is an important and useful feature for the library users. To date, two independent services and a few publisher-hosted proprietary services have been developed. Here, we address the problem of integrating alerting as functionality into open source software for distributed digital libraries. DL software is one application out of many that constitute so-called meta-software: software where its installation determines the properties of the actual running system (here: the Digital Library system). For this type of application, existing alerting solutions are insufficient; new ways have to be found for supporting a fragmented network of distributed digital library servers. We propose the design and usage of a distributed Directory Service. This paper also introduces our hybrid approach using two networks and a combination of different distributed routing strategies for event filtering

    Binding time: Harold Innis and the balance of new media

    Get PDF
    Much has been made of the impacts of digital media on the experience of space: new modes of perception and action at a distance: accelerating globalisation; shifting boundaries between work and home life; and so on. It is less common to read about the impacts of digital media on the experience of time. Yet, the digitisation of cultural practices and artefacts has significant implications for structuring our relationships with both the future and the past. In the theoretical traditions concerned with technology and time, the work of Harold Innis, a Canadian economist and communications theorist, offers an approach to understanding the social significance of all kinds of media. He analysed how different media relate to space and time: space-binding media extend influence and meanings over distances, helping to build empires and develop cohesion across space; while time-binding media influence cultural patterns in duration. For Innis, civilisations can be measured by their balance between managing time and controlling space. If this remains the case today, how has the computer changed this balance in our own culture? This paper examines the extent to which Innisā€™s concepts about media still apply today

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Calculating the inherent visual structure of a landscape (inherent viewshed) using high-throughput computing

    Get PDF
    This paper describes a method of calculating the inherent visibility at all locations in a landscape (ā€˜total viewshedā€™) by making use of redundant computer cycles. This approach uses a simplified viewshed program that is suitable for use within a distributed environment, in this case managed by the Condor system. Distributing the calculation in this way reduced the calculation time of our example from an estimated 34 days to slightly over 25 hours using a cluster of 43 workstations. Finally, we discuss the example ā€˜total viewshedā€™ raster for the Avebury region, and briefly highlight some of its implications

    The Computational Power of Beeps

    Full text link
    In this paper, we study the quantity of computational resources (state machine states and/or probabilistic transition precision) needed to solve specific problems in a single hop network where nodes communicate using only beeps. We begin by focusing on randomized leader election. We prove a lower bound on the states required to solve this problem with a given error bound, probability precision, and (when relevant) network size lower bound. We then show the bound tight with a matching upper bound. Noting that our optimal upper bound is slow, we describe two faster algorithms that trade some state optimality to gain efficiency. We then turn our attention to more general classes of problems by proving that once you have enough states to solve leader election with a given error bound, you have (within constant factors) enough states to simulate correctly, with this same error bound, a logspace TM with a constant number of unary input tapes: allowing you to solve a large and expressive set of problems. These results identify a key simplicity threshold beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International Symposium on Distributed Computing (DISC 2015

    On Bioelectric Algorithms

    Get PDF
    Cellular bioelectricity describes the biological phenomenon in which cells in living tissue generate and maintain patterns of voltage gradients across their membranes induced by differing concentrations of charged ions. A growing body of research suggests that bioelectric patterns represent an ancient system that plays a key role in guiding many important developmental processes including tissue regeneration, tumor suppression, and embryogenesis. This paper applies techniques from distributed algorithm theory to help better understand how cells work together to form these patterns. To do so, we present the cellular bioelectric model (CBM), a new computational model that captures the primary capabilities and constraints of bioelectric interactions between cells and their environment. We use this model to investigate several important topics from the relevant biology research literature. We begin with symmetry breaking, analyzing a simple cell definition that when combined in single hop or multihop topologies, efficiently solves leader election and the maximal independent set problem, respectively - indicating that these classical symmetry breaking tasks are well-matched to bioelectric mechanisms. We then turn our attention to the information processing ability of bioelectric cells, exploring upper and lower bounds for approximate solutions to threshold and majority detection, and then proving that these systems are in fact Turing complete - resolving an open question about the computational power of bioelectric interactions
    • ā€¦
    corecore