5,511 research outputs found

    Reduction of Stokes-Dirac structures and gauge symmetry in port-Hamiltonian systems

    Full text link
    Stokes-Dirac structures are infinite-dimensional Dirac structures defined in terms of differential forms on a smooth manifold with boundary. These Dirac structures lay down a geometric framework for the formulation of Hamiltonian systems with a nonzero boundary energy flow. Simplicial triangulation of the underlaying manifold leads to the so-called simplicial Dirac structures, discrete analogues of Stokes-Dirac structures, and thus provides a natural framework for deriving finite-dimensional port-Hamiltonian systems that emulate their infinite-dimensional counterparts. The port-Hamiltonian systems defined with respect to Stokes-Dirac and simplicial Dirac structures exhibit gauge and a discrete gauge symmetry, respectively. In this paper, employing Poisson reduction we offer a unified technique for the symmetry reduction of a generalized canonical infinite-dimensional Dirac structure to the Poisson structure associated with Stokes-Dirac structures and of a fine-dimensional Dirac structure to simplicial Dirac structures. We demonstrate this Poisson scheme on a physical example of the vibrating string

    Multi-Dirac Structures and Hamilton-Pontryagin Principles for Lagrange-Dirac Field Theories

    Full text link
    The purpose of this paper is to define the concept of multi-Dirac structures and to describe their role in the description of classical field theories. We begin by outlining a variational principle for field theories, referred to as the Hamilton-Pontryagin principle, and we show that the resulting field equations are the Euler-Lagrange equations in implicit form. Secondly, we introduce multi-Dirac structures as a graded analog of standard Dirac structures, and we show that the graph of a multisymplectic form determines a multi-Dirac structure. We then discuss the role of multi-Dirac structures in field theory by showing that the implicit field equations obtained from the Hamilton-Pontryagin principle can be described intrinsically using multi-Dirac structures. Furthermore, we show that any multi-Dirac structure naturally gives rise to a multi-Poisson bracket. We treat the case of field theories with nonholonomic constraints, showing that the integrability of the constraints is equivalent to the integrability of the underlying multi-Dirac structure. We finish with a number of illustrative examples, including time-dependent mechanics, nonlinear scalar fields and the electromagnetic field.Comment: 50 pages, v2: correction to prop. 6.1, typographical change

    Weak Form of Stokes-Dirac Structures and Geometric Discretization of Port-Hamiltonian Systems

    Full text link
    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.Comment: Copyright 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

    Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws

    Get PDF
    International audienceA reduction method is presented for systems of conservation laws with boundary energy flow. It is stated as a generalized pseudo-spectral method which performs exact differentiation by using simultaneously several approximation spaces generated by polynomials bases and suitable choices of port-variables. The symplecticity of this spatial reduction method is proved when used for the reduction of both closed and open systems of conservation laws, for any choice of collocation points (i.e. for any polynomial bases). The symplecticity of some more usual collocation schemes is discussed and finally their accuracy on approximation of the spectrum, on the example of the ideal transmission line, is discussed in comparison with the suggested reduction scheme

    Port-Hamiltonian systems: an introductory survey

    Get PDF
    The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the phase space or on a Poisson structure that is obtained by (symmetry) reduction of the phase space, in the case of a port-Hamiltonian system the geometric structure derives from the interconnection of its sub-systems. This motivates to consider Dirac structures instead of Poisson structures, since this notion enables one to define Hamiltonian systems with algebraic constraints. As a result, any power-conserving interconnection of port-Hamiltonian systems again defines a port-Hamiltonian system. The port-Hamiltonian description offers a systematic framework for analysis, control and simulation of complex physical systems, for lumped-parameter as well as for distributed-parameter models

    Fluid dynamical systems as Hamiltonian boundary control systems

    Get PDF

    Compositional Modelling of Distributed-Parameter Systems

    Get PDF

    Fluid dynamical systems as Hamiltonian boundary control systems

    Get PDF
    corecore