851 research outputs found

    A Multiobjective Optimization Approach for Market Timing

    Get PDF
    The introduction of electronic exchanges was a crucial point in history as it heralded the arrival of algorithmic trading. Designers of such systems face a number of issues, one of which is deciding when to buy or sell a given security on a financial market. Although Genetic Algorithms (GA) have been the most widely used to tackle this issue, Particle Swarm Optimization (PSO) has seen much lower adoption within the domain. In two previous works, the authors adapted PSO algorithms to tackle market timing and address the shortcomings of the previous approaches both with GA and PSO. The majority of work done to date on market timing tackled it as a single objective optimization problem, which limits its suitability to live trading as designers of such strategies will realistically pursue multiple objectives such as maximizing profits, minimizing exposure to risk and using the shortest strategies to improve execution speed. In this paper, we adapt both a GA and PSO to tackle market timing as a multiobjective optimization problem and provide an in depth discussion of our results and avenues of future research

    Combining Technical Trading Rules Using Parallel Particle Swarm Optimization based on Hadoop

    Get PDF
    Technical trading rules have been utilized in the stock markets to make profit for more than a century. However, no single trading rule can ever be expected to predict the stock price trend accurately. In fact, many investors and fund managers make trading decisions by combining a bunch of technical indicators. In this paper, we consider the complex stock trading strategy, called Performance-based Reward Strategy (PRS), proposed by [1]. Instead of combining two classes of technical trading rules, we expand the scope to combine the seven most popular classes of trading rules in financial markets, resulting in a total of 1059 component trading rules. Each component rule is assigned a starting weight and a reward/penalty mechanism based on rules' recent profit is proposed to update their weights over time. To determine the best parameter values of PRS, we employ an improved time variant particle swarm optimization (TVPSO) algorithm with the objective of maximizing the annual net profit generated by PRS. Due to a large number of component rules and swarm size, the optimization time is significant. A parallel PSO based on Hadoop, an open source parallel programming model of MapReduce, is employed to optimize PRS more efficiently. The experimental results show that PRS outperforms all of the component rules in the testing period.published_or_final_versio

    Complex stock trading strategy based on particle swarm optimization

    Get PDF
    Technical Session 1B - Advanced Algorithmic Trading – I: no. 41Trading rules have been utilized in the stock market to make profit for more than a century. However, only using a single trading rule may not be sufficient to predict the stock price trend accurately. Although some complex trading strategies combining various classes of trading rules have been proposed in the literature, they often pick only one rule for each class, which may lose valuable information from other rules in the same class. In this paper, a complex stock trading strategy, namely weight reward strategy (WRS), is proposed. WRS combines the two most popular classes of trading rules-moving average (MA) and trading range break-out (TRB). For both MA and TRB, WRS includes different combinations of the rule parameters to get a universe of 140 component trading rules in all. Each component rule is assigned a start weight and a reward/penalty mechanism based on profit is proposed to update these rules’ weights over time. To determine the best parameter values of WRS, we employ an improved time variant Particle Swarm Optimization (PSO) algorithm with the objective of maximizing the annual net profit generated by WRS. The experiments show that our proposed WRS optimized by PSO outperforms the best moving average and trading range break-out rules.postprin

    Geneettinen Algoritmi Optimaalisten Investointistrategioiden MÀÀrittÀmiseen

    Get PDF
    Investors including banks, insurance companies and private investors are in a constant need for new investment strategies and portfolio selection methods. In this work we study the developed models, forecasting methods and portfolio management approaches. The information is used to create a decision-making system, or investment strategy, to form stock investment portfolios. The decision-making system is optimized using a genetic algorithm to find profitable low risk investment strategies. The constructed system is tested by simulating its performance with a large set of real stock market and economic data. The tests reveal that the constructed system requires a large sample of stock market and economic data before it finds well performing investment strategies. The parameters of the decision-making system converge surprisingly fast and the available computing capacity turned out to be sufficient even when a large amount of data is used in the system calibration. The model seems to find logics that govern stock market behavior. With a sufficient large amount of data for the calibration, the decision-making model finds strategies that work with regard to profit and portfolio diversification. The recommended strategies worked also outside the sample data that was used for system parameter identification (calibration). This work was done at Unisolver Ltd.Investoijat kuten pankit, vakuutusyhtiöt ja yksityissijoittajat tarvitsevat jatkuvasti uusia investointistrategioita portfolioiden mÀÀrittÀmiseen. TÀssÀ työssÀ tutkitaan aiemmin kehitettyjÀ sijoitusmalleja, ennustemenetelmiÀ ja sijoitussalkun hallinnassa yleisesti kÀytettyjÀ lÀhestymistapoja. LöydettyÀ tietoa hyödyntÀen kehitetÀÀn uusi pÀÀtöksentekomenetelmÀ (investointistrategia), jolla mÀÀritetÀÀn sijoitussalkun sisÀltö kunakin ajanhetkenÀ. PÀÀtöksentekomalli optimoidaan geneettisellÀ algoritmilla. Tavoitteena on löytÀÀ tuottavia ja pienen riskin investointistrategioita. Kehitetyn mallin toimintaa simuloidaan suurella mÀÀrÀllÀ todellista pörssi- ja talousaineistoa. Testausvaihe osoittaakin, ettÀ pÀÀtöksentekomallin optimoinnissa tarvitaan suuri testiaineisto toimivien strategioiden löytÀmiseksi. Rakennetun mallin parametrit konvergoivat optimointivaiheessa nopeasti. KÀytettÀvissÀ oleva laskentateho osoittautui riittÀvÀksi niissÀkin tilanteissa, joissa toisten menetelmien laskenta laajan aineiston takia hidastuu. Malli vaikuttaa löytÀvÀn logiikkaa, joka ymmÀrtÀÀ pörssikurssien kÀyttÀytymistÀ. RiittÀvÀn suurella testiaineistolla malli löytÀÀ strategioita, joilla saavutetaan hyvÀ tuotto ja pieni riski. Strategiat toimivat myös mallin kalibroinnissa kÀytetyn aineiston ulkopuolella, tuottaen hyviÀ sijoitussalkkuja. Työ tehtiin Unisolver Oy:ssÀ

    XgBoost Hyper-Parameter Tuning Using Particle Swarm Optimization for Stock Price Forecasting

    Get PDF
    Investment in the capital market has become a lifestyle for millennials in Indonesia as seen from the increasing number of SID (Single Investor Identification) from 2.4 million in 2019 to 10.3 million in December 2022. The increase is due to various reasons, starting from the Covid-19 pandemic, which limited the space for social interaction and the easy way to invest in the capital market through various e-commerce platforms. These investors generally use fundamental and technical analysis to maximize profits and minimize the risk of loss in stock investment. These methods may lead to problem where subjectivity and different interpretation may appear in the process. Additionally, these methods are time consuming due to the need in the deep research on the financial statements, economic conditions and company reports. Machine learning by utilizing historical stock price data which is time-series data is one of the methods that can be used for the stock price forecasting. This paper proposed XGBoost optimized by Particle Swarm Optimization (PSO) for stock price forecasting. XGBoost is known for its ability to make predictions accurately and efficiently. PSO is used to optimize the hyper-parameter values of XGBoost. The results of optimizing the hyper-parameter of the XGBoost algorithm using the Particle Swarm Optimization (PSO) method achieved the best performance when compared with standard XGBoost, Long Short-Term Memory (LSTM), Support Vector Regression (SVR) and Random Forest. The results in RSME, MAE and MAPE shows the lowest values in the proposed method, which are, 0.0011, 0.0008, and 0.0772%, respectively. Meanwhile, the  reaches the highest value. It is seen that the PSO-optimized XGBoost is able to predict the stock price with a low error rate, and can be a promising model to be implemented for the stock price forecasting. This result shows the contribution of the proposed method

    A survey on financial applications of metaheuristics

    Get PDF
    Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during the last decades to support complex decision-making in a number of fields, such as logistics and transportation, telecommunication networks, bioinformatics, finance, and the like. The continuous increase in computing power, together with advancements in metaheuristics frameworks and parallelization strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-life combinatorial optimization problems that arise in a number of financial and banking activities. This article reviews some of the works related to the use of metaheuristics in solving both classical and emergent problems in the finance arena. A non-exhaustive list of examples includes rich portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk assessment. This article also discusses some open opportunities for researchers in the field, and forecast the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems being considered.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER, and the Universitat Jaume I mobility program (E-2015-36)

    Reinforcement Learning Applied to Trading Systems: A Survey

    Full text link
    Financial domain tasks, such as trading in market exchanges, are challenging and have long attracted researchers. The recent achievements and the consequent notoriety of Reinforcement Learning (RL) have also increased its adoption in trading tasks. RL uses a framework with well-established formal concepts, which raises its attractiveness in learning profitable trading strategies. However, RL use without due attention in the financial area can prevent new researchers from following standards or failing to adopt relevant conceptual guidelines. In this work, we embrace the seminal RL technical fundamentals, concepts, and recommendations to perform a unified, theoretically-grounded examination and comparison of previous research that could serve as a structuring guide for the field of study. A selection of twenty-nine articles was reviewed under our classification that considers RL's most common formulations and design patterns from a large volume of available studies. This classification allowed for precise inspection of the most relevant aspects regarding data input, preprocessing, state and action composition, adopted RL techniques, evaluation setups, and overall results. Our analysis approach organized around fundamental RL concepts allowed for a clear identification of current system design best practices, gaps that require further investigation, and promising research opportunities. Finally, this review attempts to promote the development of this field of study by facilitating researchers' commitment to standards adherence and helping them to avoid straying away from the RL constructs' firm ground.Comment: 38 page

    Using Particle Swarm Optimization for Market Timing Strategies

    Get PDF
    Market timing is the issue of deciding when to buy or sell a given asset on the market. As one of the core issues of algorithmic trading systems, designers of such system have turned to computational intelligence methods to aid them in this task. In this thesis, we explore the use of Particle Swarm Optimization (PSO) within the domain of market timing.nPSO is a search metaheuristic that was first introduced in 1995 [28] and is based on the behavior of birds in flight. Since its inception, the PSO metaheuristic has seen extensions to adapt it to a variety of problems including single objective optimization, multiobjective optimization, niching and dynamic optimization problems. Although popular in other domains, PSO has seen limited application to the issue of market timing. The current incumbent algorithm within the market timing domain is Genetic Algorithms (GA), based on the volume of publications as noted in [40] and [84]. In this thesis, we use PSO to compose market timing strategies using technical analysis indicators. Our first contribution is to use a formulation that considers both the selection of components and the tuning of their parameters in a simultaneous manner, and approach market timing as a single objective optimization problem. Current approaches only considers one of those aspects at a time: either selecting from a set of components with fixed values for their parameters or tuning the parameters of a preset selection of components. Our second contribution is proposing a novel training and testing methodology that explicitly exposes candidate market timing strategies to numerous price trends to reduce the likelihood of overfitting to a particular trend and give a better approximation of performance under various market conditions. Our final contribution is to consider market timing as a multiobjective optimization problem, optimizing five financial metrics and comparing the performance of our PSO variants against a well established multiobjective optimization algorithm. These algorithms address unexplored research areas in the context of PSO algorithms to the best of our knowledge, and are therefore original contributions. The computational results over a range of datasets shows that the proposed PSO algorithms are competitive to GAs using the same formulation. Additionally, the multiobjective variant of our PSO algorithm achieve statistically significant improvements over NSGA-II
    • 

    corecore