80,687 research outputs found

    On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees

    Full text link
    In this paper, flow models of networks without congestion control are considered. Users generate data transfers according to some Poisson processes and transmit corresponding packet at a fixed rate equal to their access rate until the entire document is received at the destination; some erasure codes are used to make the transmission robust to packet losses. We study the stability of the stochastic process representing the number of active flows in two particular cases: linear networks and upstream trees. For the case of linear networks, we notably use fluid limits and an interesting phenomenon of "time scale separation" occurs. Bounds on the stability region of linear networks are given. For the case of upstream trees, underlying monotonic properties are used. Finally, the asymptotic stability of those processes is analyzed when the access rate of the users decreases to 0. An appropriate scaling is introduced and used to prove that the stability region of those networks is asymptotically maximized

    Instability in Stochastic and Fluid Queueing Networks

    Full text link
    The fluid model has proven to be one of the most effective tools for the analysis of stochastic queueing networks, specifically for the analysis of stability. It is known that stability of a fluid model implies positive (Harris) recurrence (stability) of a corresponding stochastic queueing network, and weak stability implies rate stability of a corresponding stochastic network. These results have been established both for cases of specific scheduling policies and for the class of all work conserving policies. However, only partial converse results have been established and in certain cases converse statements do not hold. In this paper we close one of the existing gaps. For the case of networks with two stations we prove that if the fluid model is not weakly stable under the class of all work conserving policies, then a corresponding queueing network is not rate stable under the class of all work conserving policies. We establish the result by building a particular work conserving scheduling policy which makes the associated stochastic process transient. An important corollary of our result is that the condition ρ∗≀1\rho^*\leq 1, which was proven in \cite{daivan97} to be the exact condition for global weak stability of the fluid model, is also the exact global rate stability condition for an associated queueing network. Here ρ∗\rho^* is a certain computable parameter of the network involving virtual station and push start conditions.Comment: 30 pages, To appear in Annals of Applied Probabilit

    Wireless Network-Level Partial Relay Cooperation: A Stable Throughput Analysis

    Full text link
    In this work, we study the benefit of partial relay cooperation. We consider a two-node system consisting of one source and one relay node transmitting information to a common destination. The source and the relay have external traffic and in addition, the relay is equipped with a flow controller to regulate the incoming traffic from the source node. The cooperation is performed at the network level. A collision channel with erasures is considered. We provide an exact characterization of the stability region of the system and we also prove that the system with partial cooperation is always better or at least equal to the system without the flow controller.Comment: Submitted for journal publication. arXiv admin note: text overlap with arXiv:1502.0113
    • 

    corecore