6,762 research outputs found

    Multiscale theory of turbulence in wavelet representation

    Full text link
    We present a multiscale description of hydrodynamic turbulence in incompressible fluid based on a continuous wavelet transform (CWT) and a stochastic hydrodynamics formalism. Defining the stirring random force by the correlation function of its wavelet components, we achieve the cancellation of loop divergences in the stochastic perturbation expansion. An extra contribution to the energy transfer from large to smaller scales is considered. It is shown that the Kolmogorov hypotheses are naturally reformulated in multiscale formalism. The multiscale perturbation theory and statistical closures based on the wavelet decomposition are constructed.Comment: LaTeX, 27 pages, 3 eps figure

    Scale-Dependent Functions, Stochastic Quantization and Renormalization

    Get PDF
    We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions ϕ(b)L2(Rd)\phi(b)\in L^2({\mathbb R}^d) to the theory of functions that depend on coordinate bb and resolution aa. In the simplest case such field theory turns out to be a theory of fields ϕa(b,)\phi_a(b,\cdot) defined on the affine group G:x=ax+bG:x'=ax+b, a>0,x,bRda>0,x,b\in {\mathbb R}^d, which consists of dilations and translation of Euclidean space. The fields ϕa(b,)\phi_a(b,\cdot) are constructed using the continuous wavelet transform. The parameters of the theory can explicitly depend on the resolution aa. The proper choice of the scale dependence g=g(a)g=g(a) makes such theory free of divergences by construction.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Generalized chronotaxic systems: time-dependent oscillatory dynamics stable under continuous perturbation

    Get PDF
    Chronotaxic systems represent deterministic nonautonomous oscillatory systems which are capable of resisting continuous external perturbations while having a complex time-dependent dynamics. Until their recent introduction in \emph{Phys. Rev. Lett.} \textbf{111}, 024101 (2013) chronotaxic systems had often been treated as stochastic, inappropriately, and the deterministic component had been ignored. While the previous work addressed the case of the decoupled amplitude and phase dynamics, in this paper we develop a generalized theory of chronotaxic systems where such decoupling is not required. The theory presented is based on the concept of a time-dependent point attractor or a driven steady state and on the contraction theory of dynamical systems. This simplifies the analysis of chronotaxic systems and makes possible the identification of chronotaxic systems with time-varying parameters. All types of chronotaxic dynamics are classified and their properties are discussed using the nonautonomous Poincar\'e oscillator as an example. We demonstrate that these types differ in their transient dynamics towards a driven steady state and according to their response to external perturbations. Various possible realizations of chronotaxic systems are discussed, including systems with temporal chronotaxicity and interacting chronotaxic systems.Comment: 9 pages, 8 figure

    Multi-scale uncertainty quantification in geostatistical seismic inversion

    Full text link
    Geostatistical seismic inversion is commonly used to infer the spatial distribution of the subsurface petro-elastic properties by perturbing the model parameter space through iterative stochastic sequential simulations/co-simulations. The spatial uncertainty of the inferred petro-elastic properties is represented with the updated a posteriori variance from an ensemble of the simulated realizations. Within this setting, the large-scale geological (metaparameters) used to generate the petro-elastic realizations, such as the spatial correlation model and the global a priori distribution of the properties of interest, are assumed to be known and stationary for the entire inversion domain. This assumption leads to underestimation of the uncertainty associated with the inverted models. We propose a practical framework to quantify uncertainty of the large-scale geological parameters in seismic inversion. The framework couples geostatistical seismic inversion with a stochastic adaptive sampling and Bayesian inference of the metaparameters to provide a more accurate and realistic prediction of uncertainty not restricted by heavy assumptions on large-scale geological parameters. The proposed framework is illustrated with both synthetic and real case studies. The results show the ability retrieve more reliable acoustic impedance models with a more adequate uncertainty spread when compared with conventional geostatistical seismic inversion techniques. The proposed approach separately account for geological uncertainty at large-scale (metaparameters) and local scale (trace-by-trace inversion)

    Fast Stochastic Hierarchical Bayesian MAP for Tomographic Imaging

    Full text link
    Any image recovery algorithm attempts to achieve the highest quality reconstruction in a timely manner. The former can be achieved in several ways, among which are by incorporating Bayesian priors that exploit natural image tendencies to cue in on relevant phenomena. The Hierarchical Bayesian MAP (HB-MAP) is one such approach which is known to produce compelling results albeit at a substantial computational cost. We look to provide further analysis and insights into what makes the HB-MAP work. While retaining the proficient nature of HB-MAP's Type-I estimation, we propose a stochastic approximation-based approach to Type-II estimation. The resulting algorithm, fast stochastic HB-MAP (fsHBMAP), takes dramatically fewer operations while retaining high reconstruction quality. We employ our fsHBMAP scheme towards the problem of tomographic imaging and demonstrate that fsHBMAP furnishes promising results when compared to many competing methods.Comment: 5 Pages, 4 Figures, Conference (Accepted to Asilomar 2017
    corecore