40,917 research outputs found

    Top-percentile traffic routing problem by dynamic programming

    Get PDF
    Multi-homing is a technology used by Internet Service Provider (ISP) to connect to the Internet via different network providers. To make full use of the underlying networks with minimum cost, an optimal routing strategy is required by ISPs. This study investigates the optimal routing strategy in case where network providers charge ISPs according to top-percentile pricing. We call this problem the Top-percentile Traffic Routing Problem (TpTRP). The TpTRP is a multistage stochastic optimisation problem in which routing decision should be made before knowing the amount of traffic that is to be routed in the following time period. The stochastic nature of the problem forms the critical difficulty of this study. In this paper several approaches are investigated in modelling and solving the problem. We begin by modelling the TpTRP as a multi-stage stochastic programming problem, which is hard to solve due to the integer variables introduced by top-percentile pricing. Several simplifications of the original TpTRP are then explored in the second part of this work. Some of these allow analytical solutions which lead to bounds on the achievable optimal solution. We also establish bounds by investigation several "naive" routing policies. In the end, we explore the solution of the TpTRP as a stochastic dynamic programming problem by a discretization of the state space. This SDP model gives us achievable routing policies on medium size instances of TpTRP, which of course improve the naive routing policies. With a classification of the SDP decision table, a crude routing policy for realistic size instances can be developed from the smaller size SDP model. © 2011 Springer Science+Business Media, LLC

    Orion Routing Protocol for Delay-Tolerant Networks

    Full text link
    In this paper, we address the problem of efficient routing in delay tolerant network. We propose a new routing protocol dubbed as ORION. In ORION, only a single copy of a data packet is kept in the network and transmitted, contact by contact, towards the destination. The aim of the ORION routing protocol is twofold: on one hand, it enhances the delivery ratio in networks where an end-to-end path does not necessarily exist, and on the other hand, it minimizes the routing delay and the network overhead to achieve better performance. In ORION, nodes are aware of their neighborhood by the mean of actual and statistical estimation of new contacts. ORION makes use of autoregressive moving average (ARMA) stochastic processes for best contact prediction and geographical coordinates for optimal greedy data packet forwarding. Simulation results have demonstrated that ORION outperforms other existing DTN routing protocols such as PRoPHET in terms of end-to-end delay, packet delivery ratio, hop count and first packet arrival

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201
    • …
    corecore