1,209 research outputs found

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Adaptive neural network cascade control system with entropy-based design

    Get PDF
    A neural network (NN) based cascade control system is developed, in which the primary PID controller is constructed by NN. A new entropy-based measure, named the centred error entropy (CEE) index, which is a weighted combination of the error cross correntropy (ECC) criterion and the error entropy criterion (EEC), is proposed to tune the NN-PID controller. The purpose of introducing CEE in controller design is to ensure that the uncertainty in the tracking error is minimised and also the peak value of the error probability density function (PDF) being controlled towards zero. The NN-controller design based on this new performance function is developed and the convergent conditions are. During the control process, the CEE index is estimated by a Gaussian kernel function. Adaptive rules are developed to update the kernel size in order to achieve more accurate estimation of the CEE index. This NN cascade control approach is applied to superheated steam temperature control of a simulated power plant system, from which the effectiveness and strength of the proposed strategy are discussed by comparison with NN-PID controllers tuned with EEC and ECC criterions

    Stochastic optimal adaptive controller and communication protocol design for networked control systems

    Get PDF
    Networked Control System (NCS) is a recent topic of research wherein the feedback control loops are closed through a real-time communication network. Many design challenges surface in such systems due to network imperfections such as random delays, packet losses, quantization effects and so on. Since existing control techniques are unsuitable for such systems, in this dissertation, a suite of novel stochastic optimal adaptive design methodologies is undertaken for both linear and nonlinear NCS in presence of uncertain system dynamics and unknown network imperfections such as network-induced delays and packet losses. The design is introduced in five papers. In Paper 1, a stochastic optimal adaptive control design is developed for unknown linear NCS with uncertain system dynamics and unknown network imperfections. A value function is adjusted forward-in-time and online, and a novel update law is proposed for tuning value function estimator parameters. Additionally, by using estimated value function, optimal adaptive control law is derived based on adaptive dynamic programming technique. Subsequently, this design methodology is extended to solve stochastic optimal strategies of linear NCS zero-sum games in Paper 2. Since most systems are inherently nonlinear, a novel stochastic optimal adaptive control scheme is then developed in Paper 3 for nonlinear NCS with unknown network imperfections. On the other hand, in Paper 4, the network protocol behavior (e.g. TCP and UDP) are considered and optimal adaptive control design is revisited using output feedback for linear NCS. Finally, Paper 5 explores a co-design framework where both the controller and network scheduling protocol designs are addressed jointly so that proposed scheme can be implemented into next generation Cyber Physical Systems --Abstract, page iv

    Event sampled optimal adaptive regulation of linear and a class of nonlinear systems

    Get PDF
    In networked control systems (NCS), wherein a communication network is used to close the feedback loop, the transmission of feedback signals and execution of the controller is currently carried out at periodic sampling instants. Thus, this scheme requires a significant computational power and network bandwidth. In contrast, the event-based aperiodic sampling and control, which is introduced recently, appears to relieve the computational burden and high network resource utilization. Therefore, in this dissertation, a suite of novel event sampled adaptive regulation schemes in both discrete and continuous time domain for uncertain linear and nonlinear systems are designed. Event sampled Q-learning and adaptive/neuro dynamic programming (ADP) schemes without value and policy iterations are utilized for the linear and nonlinear systems, respectively, in both the time domains. Neural networks (NN) are employed as approximators for nonlinear systems and, hence, the universal approximation property of NN in the event-sampled framework is introduced. The tuning of the parameters and the NN weights are carried out in an aperiodic manner at the event sampled instants leading to a further saving in computation when compared to traditional NN based control. The adaptive regulator when applied on a linear NCS with time-varying network delays and packet losses shows a 30% and 56% reduction in computation and network bandwidth usage, respectively. In case of nonlinear NCS with event sampled ADP based regulator, a reduction of 27% and 66% is observed when compared to periodic sampled schemes. The sampling and transmission instants are determined through adaptive event sampling conditions derived using Lyapunov technique by viewing the closed-loop event sampled linear and nonlinear systems as switched and/or impulsive dynamical systems. --Abstract, page iii

    Deep Reinforcement Learning for Event-Triggered Control

    Full text link
    Event-triggered control (ETC) methods can achieve high-performance control with a significantly lower number of samples compared to usual, time-triggered methods. These frameworks are often based on a mathematical model of the system and specific designs of controller and event trigger. In this paper, we show how deep reinforcement learning (DRL) algorithms can be leveraged to simultaneously learn control and communication behavior from scratch, and present a DRL approach that is particularly suitable for ETC. To our knowledge, this is the first work to apply DRL to ETC. We validate the approach on multiple control tasks and compare it to model-based event-triggering frameworks. In particular, we demonstrate that it can, other than many model-based ETC designs, be straightforwardly applied to nonlinear systems

    LQG control with missing observation and control packets

    Get PDF
    Abstract: The paper considers the Linear Quadratic Gaussian (LQG) optimal control problem in the discrete time setting and when data loss may occur between the sensors and the estimation-control unit and between the latter and the actuation points. For protocols where packets are acknowledged at the receiver (e.g. TCP type protocols), the separation principle holds. Moreover, the optimal LQG control is a linear function of the state. Finally, building upon our previous results on estimation with unreliable communication, the paper shows the existence of critical arrival probabilities below which the optimal controller fails to stabilize the system. This is done by providing analytic upper and and lower bounds on the cost functional, and stochastically characterizing their convergence properties in the infinite horizon. More interestingly, it turns out that when there is no feedback on whether a control packet has been delivered or not(e.g. UDP type protocols), the LQG optimal controller is in general nonlinear. A special case when the optimal controller is indeed linear is shown
    • …
    corecore