39 research outputs found

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    A bi-level model and solution methods for partial interdiction problem on capacitated hierarchical facilities

    Get PDF
    Due to the importance of gaining high levels of customer satisfaction in today's competitive world, making appropriate decisions in the face of malicious attacks is valued highly by many organizations. In this paper, to predict and handle the destructive effects of an intentional attack on capacitated nested hierarchical facilities, a bi-level partial interdiction problem is proposed. In this problem, there is an interdictor who can attack facilities partially in different levels. Subsequently, the system defender could respond to the customers’ demand in two different ways, namely through the remaining system facilities and the outsourcing option. The goal of the defender is to minimize the satisfaction cost of all customers’ demand under the interdictor's attacking scenario. This problem can be modeled as a bi-level programming model in which an interdictor and the system defender play the role of the leader and the follower, respectively. Due to the inherent complexity of the bi-level programming models, we develop a heuristic approach, namely “FDS”, to obtain near optimal solutions within a reasonable running time. In each iteration of the FDS, an interdiction scenario is produced heuristically and, thereupon CPLEX solver is called to solve the lower level of the model. To evaluate the effectiveness of the proposed model, a comparison between the cost of customers’ demand satisfaction in both absence and presence of the bi-level model is drawn. Computational results show that for those instances in which the optimal solutions are available, the proposed model can, on average, achieve a saving of 7.94%

    A Study of Network Violator Interception Based on a Reliable Game Model

    Get PDF
    This study focuses on planning interceptor locations in a general transportation network to maximize the expected benefits from catching violators mixing in public traveler flow. Two reliability-related characteristics are also integrated into the planning model to make it more practical. One is that each interceptor (e.g., a sensor or a checkpoint) has a failure probability. The second is the existence of a “game” between the interceptor planner and violators. A nonlinear nonconvex binary integer programming model is presented. We develop a simulated annealing (SA) algorithm to solve this model, and numerical experiments are conducted to illustrate the computational efficiency of the proposed algorithm. We also analyze the sensitivity of the disruption probability of interceptors to optimal objective function values and discuss how to determine the values of these parameters in a violator route choice model

    Network reliability analysis through survival signature and machine learning techniques

    Get PDF
    As complex networks become ubiquitous in modern society, ensuring their reliability is crucial due to the potential consequences of network failures. However, the analysis and assessment of network reliability become computationally challenging as networks grow in size and complexity. This research proposes a novel graph-based neural network framework for accurately and efficiently estimating the survival signature and network reliability. The method incorporates a novel strategy to aggregate feature information from neighboring nodes, effectively capturing the response flow characteristics of networks. Additionally, the framework utilizes the higher-order graph neural networks to further aggregate feature information from neighboring nodes and the node itself, enhancing the understanding of network topology structure. An adaptive framework along with several efficient algorithms is further proposed to improve prediction accuracy. Compared to traditional machine learning-based approaches, the proposed graph-based neural network framework integrates response flow characteristics and network topology structure information, resulting in highly accurate network reliability estimates. Moreover, once the graph-based neural network is properly constructed based on the original network, it can be directly used to estimate network reliability of different network variants, i.e., sub-networks, which is not feasible with traditional non-machine learning methods. Several applications demonstrate the effectiveness of the proposed method in addressing network reliability analysis problems

    Solving Multi-objective Integer Programs using Convex Preference Cones

    Get PDF
    Esta encuesta tiene dos objetivos: en primer lugar, identificar a los individuos que fueron víctimas de algún tipo de delito y la manera en que ocurrió el mismo. En segundo lugar, medir la eficacia de las distintas autoridades competentes una vez que los individuos denunciaron el delito que sufrieron. Adicionalmente la ENVEI busca indagar las percepciones que los ciudadanos tienen sobre las instituciones de justicia y el estado de derecho en Méxic

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes
    corecore