2,949 research outputs found

    Reducing complexity of multiagent systems with symmetry breaking: an application to opinion dynamics with polls

    Get PDF
    In this paper we investigate the possibility of reducing the complexity of a system composed of a large number of interacting agents, whose dynamics feature a symmetry breaking. We consider first order stochastic differential equations describing the behavior of the system at the particle (i.e., Lagrangian) level and we get its continuous (i.e., Eulerian) counterpart via a kinetic description. However, the resulting continuous model alone fails to describe adequately the evolution of the system, due to the loss of granularity which prevents it from reproducing the symmetry breaking of the particle system. By suitably coupling the two models we are able to reduce considerably the necessary number of particles while still keeping the symmetry breaking and some of its large-scale statistical properties. We describe such a multiscale technique in the context of opinion dynamics, where the symmetry breaking is induced by the results of some opinion polls reported by the media

    Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes

    Get PDF
    Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone

    Noise reduction in coarse bifurcation analysis of stochastic agent-based models: an example of consumer lock-in

    Get PDF
    We investigate coarse equilibrium states of a fine-scale, stochastic agent-based model of consumer lock-in in a duopolistic market. In the model, agents decide on their next purchase based on a combination of their personal preference and their neighbours' opinions. For agents with independent identically-distributed parameters and all-to-all coupling, we derive an analytic approximate coarse evolution-map for the expected average purchase. We then study the emergence of coarse fronts when spatial segregation is present in the relative perceived quality of products. We develop a novel Newton-Krylov method that is able to compute accurately and efficiently coarse fixed points when the underlying fine-scale dynamics is stochastic. The main novelty of the algorithm is in the elimination of the noise that is generated when estimating Jacobian-vector products using time-integration of perturbed initial conditions. We present numerical results that demonstrate the convergence properties of the numerical method, and use the method to show that macroscopic fronts in this model destabilise at a coarse symmetry-breaking bifurcation.Comment: This version of the manuscript was accepted for publication on SIAD

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference
    • …
    corecore