71,633 research outputs found

    Stochastic computing based on volatile GeSe ovonic threshold switching selectors

    Get PDF
    Stochastic computing (SC) is a special type of digital compute strategy where values are represented by the probability of 1 and 0 in stochastic bit streams, which leads to superior hardware simplicity and error-tolerance. In this paper, we propose and demonstrate SC with GeSe based Ovonic Threshold Switching (OTS) selector devices by exploiting their probabilistic switching behavior. The stochastic bit streams generated by OTS are demonstrated with good computation accuracy in both multiplication operation and image processing circuit. Moreover, the bit distribution has been statistically studied and linked to the collective defect de/localization behavior in the chalcogenide material. Weibull distribution of the delay time supports the origin of such probabilistic switching, facilitates further optimization of the operation condition, and lays the foundation for device modelling and circuit design. Considering its other advantages such as simple structure, fast speed, and volatile nature, OTS is a promising material for implementing SC in a wide range of novel applications, such as image processors, neural networks, control systems and reliability analysis

    Network power flow analysis for a high penetration of distributed generation

    Get PDF
    Increasing numbers of very small generators are being connected to electricity distribution systems around the world. Examples include photovoltaics (PV) and gas-fired domestic-scale combined heat and power (micro-CHP) systems, with electrical outputs in the region of 1 to 2 kW. These generators are normally installed within consumers' premises and connected to the domestic electricity supply network (230 V single-phase in Europe, 120 V in North America). There is a growing need to understand and quantify the technical impact that high penetrations of such generators may have on the operation of distribution systems. This paper presents an approach to analyzing this impact together with results indicating that considerable penetrations of micro-generation can be accommodated in a typical distribution system

    Modeling and control of complex dynamic systems: Applied mathematical aspects

    Get PDF
    The concept of complex dynamic systems arises in many varieties, including the areas of energy generation, storage and distribution, ecosystems, gene regulation and health delivery, safety and security systems, telecommunications, transportation networks, and the rapidly emerging research topics seeking to understand and analyse. Such systems are often concurrent and distributed, because they have to react to various kinds of events, signals, and conditions. They may be characterized by a system with uncertainties, time delays, stochastic perturbations, hybrid dynamics, distributed dynamics, chaotic dynamics, and a large number of algebraic loops. This special issue provides a platform for researchers to report their recent results on various mathematical methods and techniques for modelling and control of complex dynamic systems and identifying critical issues and challenges for future investigation in this field. This special issue amazingly attracted one-hundred-and eighteen submissions, and twenty-eight of them are selected through a rigorous review procedure

    Smart Nanostructures and Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is a semantic information theory of reality in which space and quantum phenomena are emergent.Comment: LaTex,14 pages 1 eps file. To be published in BioMEMS and Smart Nanostructures, Proceedings of SPIE Conference #4590, ed. L. B. Kis

    Effect of distributed energy systems on the electricity grid

    Get PDF
    A feasibility study is being carried out at Ecotricity into a distributed energy storage system comprising Energy stores (batteries) placed at consumer level (in customerā€™s homes). The aim is to flatten consumer demand and make better use of home-based generation. The Study Group considered the mechanism of connecting batteries to the local distribution system, the ability to meet engineering requirements for the standard of the connection, and the potential impact of large numbers of such connections on stability of the local distribution network. Network and (DC-AC) invertor models were used to examine network connection transients. A statistical model was proposed to estimate the distribution of key electrical parameters to determine the likelihood of engineering standards being exceeded. The Study Group also considered stochastic methods of modelling wind speed, to better understand the requirements for battery energy storage as a complement to wind power

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design
    • ā€¦
    corecore