2,406 research outputs found

    An Optimal Virtual Machine Placement Method in Cloud Computing Environment

    Get PDF
    Cloud computing is formally known as an Internet-centered computing technique used for computing purposes in the cloud network. It must compute on a system where an application may simultaneously run on many connected computers. Cloud computing uses computing resources to achieve the efficiency of data centres using the virtualization concept in the cloud. The load balancers consistently allocate the workloads to all the virtual machines in the cloud to avoid an overload situation. The virtualization process implements the instances from the physical state machines to fully utilize servers. Then the dynamic data centres encompass a stochastic modelling approach for resource optimization for high performance in a cloud computing environment. This paper defines the virtualization process for obtaining energy productivity in cloud data centres. The algorithm proposed involves a stochastic modelling approach in cloud data centres for resource optimization. The load balancing method is applied in the cloud data centres to obtain the appropriate efficiency

    Integration of Energy Storage into a Future Energy System with a High Penetration of Distributed Photovoltaic Generation

    Get PDF
    Energy storage units (ESU) are increasingly used in electrical distribution systems because they can perform many functions compared with traditional equipment. These include peak shaving, voltage regulation, frequency regulation, provision of spinning reserve, and aiding integration of renewable generation by mitigating the effects of intermittency. As is the case with other equipment on electric distribution systems, it is necessary to follow appropriate methodologies in order to ensure that ESU are installed in a cost-effective manner and their benefits are realized. However, the necessary methodologies for integration of ESU have not kept pace with developments in both ESU and distribution systems. This work develops methodologies to integrate ESU into distribution systems by selecting the necessary storage technologies, energy capacities, power ratings, converter topologies, control strategies, and design lifetimes of ESU. In doing so, the impact of new technologies and issues such as volt-VAR optimization (VVO), intermittency of photovoltaic (PV) inverters, and the smart PV inverter proposed by EPRI are considered. The salient contributions of this dissertation follow. A unified methodology is developed for storage technology selection, storage capacity selection, and scheduling of an ESU used for energy arbitrage. The methodology is applied to make technology recommendations and to reveal that there exists a cost-optimal design lifetime for such an ESU. A methodology is developed for capacity selection of an ESU providing both energy arbitrage and ancillary services under a stochastic pricing structure. The ESU designed is evaluated using ridge regression for price forecasting; Ridge regression applied to overcome numerical stability and overfitting issues associated with the large number of highly correlated predictors. Heuristics are developed to speed convergence of simulated annealing for placement of distributed ESU. Scaling and clustering methods are also applied to reduce computation time for placement of ESU (or any other shunt-connected device) on a distribution system. A probabilistic model for cloud-induced photovoltaic (PV) intermittency of a single PV installation is developed and applied to the design of ESU

    Characterizing the impact of the workload on the value of dynamic resizing in data centers

    Get PDF
    Energy consumption imposes a significant cost for data centers; yet much of that energy is used to maintain excess service capacity during periods of predictably low load. Resultantly, there has recently been interest in developing designs that allow the service capacity to be dynamically resized to match the current workload. However, there is still much debate about the value of such approaches in real settings. In this paper, we show that the value of dynamic resizing is highly dependent on statistics of the workload process. In particular, both slow time-scale non-stationarities of the workload (e.g., the peak-to-mean ratio) and the fast time-scale stochasticity (e.g., the burstiness of arrivals) play key roles. To illustrate the impact of these factors, we combine optimization-based modeling of the slow time-scale with stochastic modeling of the fast time-scale. Within this framework, we provide both analytic and numerical results characterizing when dynamic resizing does (and does not) provide benefits

    Data Center Load Forecast Using Dependent Mixture Model

    Get PDF
    The dependency on cloud computing is increasing day by day. With the boom of data centers, the cost is also increasing, which forces industries to come up with techniques and methodologies to reduce the data center energy use. Load forecasting plays a vital role in both efficient scheduling and operating a data center as a virtual power plant. In this thesis work a stochastic method, based on dependent mixtures is developed to model the data center load and is used for day-ahead forecast. The method is validated using three data sets from National Renewable Energy Laboratory (NREL) and one other data centers. The proposed method proved better than the classical autoregressive, moving-average, as well as the neural network-based forecasting method, and resulted in a reduction of 7.91% mean absolute percentage error (MAPE) for the forecast. A more accurate forecast can improve power scheduling and resource management reducing the variable cost of power generation as well as the overall data center operating cost, which was quantified as a yearly savings of $13,705 for a typical 100 MW coal fired tier-IV data center

    Demand-Side Management for Energy-efficient Data Center Operations with Renewable Energy and Demand Response

    Get PDF
    In recent years, we have noticed tremendous increase of energy consumption and carbon pollution in the industrial sector, and many energy-intensive industries are striving to reduce energy cost and to have a positive impact on the environment. In this context, this dissertation is motivated by opportunities to reduce energy cost from demand-side perspective. Specifically, industries have an opportunity to reduce energy consumption by improving energy-efficiency in their system operations. By improving utilization of their resources, they can reduce waste of energy, and thus, they are able to prevent paying unnecessary energy cost. In addition, because of today‘s high penetration of renewable generation (e.g. wind or solar), many industries consider renewable energy as a promising solution to reduce energy cost and carbon pollution, and they have tried to utilize renewable energy to meet their power demand by installing on-site generation facilities (e.g. PV panels on roof top) or making a contract with renewable generation farms. Moreover, it is becoming common for energy markets to allow industries to directly purchase electricity from them while providing the industries with day-ahead and real-time electricity price information. In this situation, industries have an opportunity to adjust purchase and consumption of energy in response to time-varying electricity price and intermittent renewable generation to reduce their energy procurement cost, which are called demand response. Considering these opportunities, it is anticipated that the industrial sector can save a significant amount of energy cost, however, time-varying behavior, uncertainty and stochasticity in system operations, power demand, renewable energy, and electricity price make it challenging to determine optimal operational decision. Motivated by the aforementioned opportunities as well as challenges, this dissertation focuses on developing decision-making methodologies tailored for demand-side energy system operations to improve energy-efficiency based on energy-aware system operations and reduce energy procurement cost by utilizing renewable energy and demand response in an integrated fashion to optimally reduce energy cost. For practical application, this dissertation considers real-world practices in data centers including their operations management and power procurement for the following research tasks: (i) develop a server provisioning algorithm that dynamically adapts server operations in response to heterogeneous and time-varying workloads to reduce energy consumption while providing performance guarantees based on time-stability; (ii) propose stochastic optimization models for optimal energy procurement to determine purchase and consumption of energy based on day-ahead and real-time energy market operations considering utilization of renewable energy based on demand response; (iii) suggest a decision-making model that integrate the proposed server provisioning algorithm with energy procurement to achieve energy-efficiency in data center operations to reduce both energy consumption and energy cost against variability and uncertainty. In terms of methodologies, this study uses operations research techniques including deterministic and stochastic models, such as, queueing analysis, mixed-integer program, Markov decision process, two-stage stochastic program, and probabilistic constrained program. In conclusion, this dissertation claims that renewable energy, demand response, and energy storage are worth to be considered for data center operations to reduce energy consumption and procurement cost. Although variability and uncertainty in system operations, renewable generation, and electricity price make it challenging to determine optimal operational decisions, numerical results show that the proposed optimization problems can be efficiently solved by the developed algorithm. The proposed decision-making methodologies can also be extended to other industries, and thus, this dissertation study would be a good starting point to study demand-side management in energy system operations
    corecore