2,662 research outputs found

    Когнитивно-креативное назначение режима «диалога» в работе с художественным текстом на уроках русского языка как иностранного (на примере рассказа А. П. Чехова «Тоска»)

    Get PDF
    In this paper, a stochastic model predictive control (SMPC) approach to integrated energy (load and generation) management is proposed for a microgrid with the penetration of renewable energy sources (RES). The considered microgrid consists of RES, controllable generators (CGs), energy storages and various loads (e.g., curtailable loads, shiftable loads). Firstly, the forecasting uncertainties of load demand, wind and photovoltaic generation in the microgrid as well as the electricity prices are represented by typical scenarios reduced from a large number of primary scenarios via a two-stage scenario reduction technique. Secondly, a finite horizon stochastic mixed integer quadratic programming model is developed to minimize the microgrid operation cost and to reduce the spinning reserve based on the selected typical scenarios. Finally, A SMPC based control framework is proposed to take into account newly updated information to reduce the negative impacts introduced by forecast uncertainties. Through a comprehensive comparison study, simulation results show that our proposed SMPC method outperforms other state of the art approaches that it could achieve the lowest operation cost

    On the Comparison of Stochastic Model Predictive Control Strategies Applied to a Hydrogen-based Microgrid

    Get PDF
    In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.Ministerio de Economía y Competitividad DPI2013-46912-C2-1-RMinisterio de Economía y Competitividad DPI2013-482443-C2-1-

    Application of Robust Model Predictive Control to a Renewable Hydrogen-based Microgrid

    Get PDF
    In order to cope with uncertainties present in the renewable energy generation, as well as in the demand consumer, we propose in this paper the formulation and comparison of three robust model predictive control techniques, i. i. e., multi-scenario, tree-based, and chance-constrained model predictive control, which are applied to a nonlinear plant-replacement model that corresponds to a real laboratory-scale plant located in the facilities of the University of Seville. Results show the effectiveness of these three techniques considering the stochastic nature, proper of these systems

    A MPC Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization

    Get PDF
    In this paper, a novel model predictive control strategy, with a 24-h prediction horizon, is proposed to reduce the operational cost of microgrids. To overcome the complexity of the optimization problems arising from the operation of the microgrid at each step, an adaptive evolutionary strategy with a satisfactory trade-off between exploration and exploitation capabilities was added to the model predictive control. The proposed strategy was evaluated using a representative microgrid that includes a wind turbine, a photovoltaic plant, a microturbine, a diesel engine, and an energy storage system. The achieved results demonstrate the validity of the proposed approach, outperforming a global scheduling planner-based on a genetic algorithm by 14.2% in terms of operational cost. In addition, the proposed approach also better manages the use of the energy storage system.Ministerio de Economía y Competitividad DPI2016-75294-C2-2-RUnión Europea (Programa Horizonte 2020) 76409

    A resilient approach for distributed MPC-based economic dispatch in interconnected microgrids

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Economic dispatch of interconnected microgrids that is based on distributed model predictive control (DMPC) requires the cooperation of all agents (microgrids). This paper discusses the case in which some of the agents might not comply with the decisions computed by performing a DMPC algorithm. In this regard, these agents could obtain a better performance at the cost of degrading the performance of the network as a whole. A resilient distributed method that can deal with such issues is proposed and studied in this paper. The method consists of two parts. The first part is to ensure that the decisions obtained from the algorithm are robustly feasible against most of the attacks with high confidence. In this part, we employ a two-step randomization-based approach to obtain a feasible solution with a predefined level of confidence. The second part consists in the identification and mitigation of the adversarial agents, which utilizes hypothesis testing with Bayesian inference and requires each agent to solve a mixed-integer problem to decide the connections with its neighbors. In addition, an analysis of the decisions computed using the stochastic approach and the outcome of the identification and mitigation method is provided. The performance of the proposed approach is also shown through numerical simulations.Peer ReviewedPostprint (author's final draft

    Risk-Averse Model Predictive Operation Control of Islanded Microgrids

    Full text link
    In this paper we present a risk-averse model predictive control (MPC) scheme for the operation of islanded microgrids with very high share of renewable energy sources. The proposed scheme mitigates the effect of errors in the determination of the probability distribution of renewable infeed and load. This allows to use less complex and less accurate forecasting methods and to formulate low-dimensional scenario-based optimisation problems which are suitable for control applications. Additionally, the designer may trade performance for safety by interpolating between the conventional stochastic and worst-case MPC formulations. The presented risk-averse MPC problem is formulated as a mixed-integer quadratically-constrained quadratic problem and its favourable characteristics are demonstrated in a case study. This includes a sensitivity analysis that illustrates the robustness to load and renewable power prediction errors

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation

    Advanced Control for Energy Management of Grid-Connected Hybrid Power Systems in the Sugar Cane Industry

    Get PDF
    This work presents a process supervision and advanced control structure, based on Model Predictive Control (MPC) coupled with disturbance estimation techniques and a finite-state machine decision system, responsible for setting energy productions set-points. This control scheme is applied to energy generation optimization in a sugar cane power plant, with non-dispatchable renewable sources, such as photovoltaic and wind power generation, as well as dispatchable sources, as biomass. The energy plant is bound to produce steam in different pressures, cold water and, imperiously, has to produce and maintain an amount of electric power throughout each month, defined by contract rules with a local distribution network operator (DNO). The proposed predictive control structure uses feedforward compensation of estimated future disturbances, obtained by the Double Exponential Smoothing (DES) method. The control algorithm has the task of performing the management of which energy system to use, maximize the use of the renewable energy sources, manage the use of energy storage units and optimize energy generation due to contract rules, while aiming to maximize economic profits. Through simulation, the proposed system is compared to a MPC structure, with standard techniques, and shows improved behavior.Ministerio de Economía y Competitividad CNPq401126/2014-5Ministerio de Economía y Competitividad CNPq303702/2011-7Ministerio de Economía y Competitividad DPI2016-78338-
    corecore