1,040 research outputs found

    Energy-efficient time-triggered communication policies for wireless networked control systems

    Get PDF
    International audienceEnergy-efficient communication protocols have become an important topic over the past two decades due to environmental issues, increased monetary costs of energy consumption , and limited battery capacities of sensors and mobile devices. In this context, we present a novel approach to design energy-efficient time-triggered communication policies for wireless networked control systems, while ensuring a given control performance. We consider a plant, modeled as a deterministic discrete-time linear system, which is controlled through a wireless network by an output-feedback law. We proceed by emulation, i.e., we construct the controller to stabilize the origin of the plant while ignoring communication constraints. Next, the wireless network is taken into account and we assume that the probability of packet drops depends on the transmission signal power. We introduce the notion of stochastic allowable transmission interval (SATI) to characterize stabilizing time-triggered transmission policies. We then explain how to minimize the average energy expenditure of the transmitting devices while satisfying the SATI constraints, thus ensuring the control requirements. Simulations results are provided to illustrate the trade-off between the communication and the control costs

    Stabilization of systems with probabilistic interval input delays and its applications to networked control systems

    Get PDF
    Motivated by the study of a class of networked control systems, this correspondence paper is concerned with the design problem of stabilization controllers for linear systems with stochastic input delays. Different from the common assumptions on time delays, it is assumed here that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delays, criteria for the stochastic stability and stabilization controller design are derived. Traditionally, in the case that the variation range of the time delay is available, the maximum allowable bound of time delays can be calculated to ensure the stability of the time-delay system. It is shown, via numerical examples, that such a maximum allowable bound could be made larger in the case that the probability distribution of the time delay is known. © 2009 IEEE.published_or_final_versio

    Networked and event-triggered control systems

    Get PDF
    In this thesis, control algorithms are studied that are tailored for platforms with limited computation and communication resources. The interest in such control algorithms is motivated by the fact that nowadays control algorithms are implemented on small and inexpensive embedded microprocessors and that the sensors, actuators and controllers are connected through multipurpose communication networks. To handle the fact that computation power is no longer abundant and that communication networks do not have in finite bandwidth, the control algorithms need to be either robust for the deficiencies induced by these constraints, or they need to optimally utilise the available computation and communication resources. In this thesis, methodologies for the design and analysis of control algorithms with such properties are developed. Networked Control Systems: In the first part of the thesis, so-called networked control systems (NCSs) are studied. The control algorithms studied in this part of the thesis can be seen as conventional sampled-data controllers that need to be robust against the artefacts introduced by using a finite bandwidth communication channel. The network-induced phenomena that are considered in this thesis are time-varying transmission intervals, time-varying delays, packet dropouts and communication constraints. The latter phenomenon causes that not all sensor and actuator data can be transmitted simultaneously and, therefore, a scheduling protocol is needed to orchestrate when to transmit what data over the network. To analyse the stability of the NCSs, a discrete-time modelling framework is presented and, in particular, two cases are considered: in the first case, the transmission intervals and delays are assumed to be upper and lower bounded, and in the second case, they are described by a random process, satisfying a continuous joint probability distribution. Both cases are relevant. The former case requires a less detailed description of the network behaviour than the latter case, while the latter results in a less conservative stability analysis than the former. This allows to make a tradeoff between modelling accuracy (of network-induced effects) and conservatism in the stability analysis. In both cases, linear plants and controllers are considered and the NCS is modelled as a discrete-time switched linear parameter-varying system. To assess the stability of this system, novel polytopic overapproximations are developed, which allows the stability of the NCS to be studied using a finite number of linear matrix inequalities. It will be shown that this approach reduces conservatism significantly with respect to existing results in the literature and allows for studying larger classes of controllers, including discrete-time dynamical output-based controllers. Hence, the main contribution of this part of the thesis is the development of a new and general framework to analyse the stability of NCSs subject to four network-induced phenomena in a hardly conservative manner. Event-Triggered Control Systems: In the second part of the thesis, socalled event-triggered control (ETC) systems are studied. ETC is a control strategy in which the control task is executed after the occurrence of an external event, rather than the elapse of a certain period of time as in conventional periodic control. In this way, ETC can be designed to only provide control updates when needed and, thereby, to optimally utilise the available computation and communication resources. This part of the thesis consists of three main contributions in this appealing area of research. The first contribution is the extension of the existing results on ETC towards dynamical output-based feedback controllers, instead of state-feedback control, as is common in the majority of the literature on ETC. Furthermore, extensions towards decentralised event triggering are presented. These extensions are important for practical implementations of ETC, as in many control applications the full state is hardly ever available for feedback, and sensors and actuators are often physically distributed, which prohibits the use of centralised event-triggering conditions. To study the stability and the L1-performance of this ETC system, a modelling framework based on impulsive systems is developed. Furthermore, for the novel output-based decentralised event-triggering conditions that are proposed, it is shown how nonzero lower bounds on the minimum inter-event times can be guaranteed and how they can be computed. The second contribution is the proposition of the new class of periodic event-triggered control (PETC) algorithms, where the objective is to combine the benefits that, on the one hand, periodic control and, on the other hand, ETC offer. In PETC, the event-triggering condition is monitored periodically and at each sampling instant it is decided whether or not to transmit the data and to use computation resources for the control task. Such an event-triggering condition has several benefits, including the inherent existence of a minimum inter-event time, which can be tuned directly. Furthermore, the fact that the event-triggering condition is only verified at the periodic sampling times, instead of continuously, makes it possible to implement this strategy in standard time-sliced embedded software architectures. To analyse the stability and the L2-performance for these PETC systems, methodologies based on piecewiselinear systems models and impulsive system models will be provided, leading to an effective analysis framework for PETC. Finally, a novel approach to solving the codesign problem of both the feedback control algorithm and the event-triggering condition is presented. In particular, a novel way to solve the minimum attention and anytime attention control problems is proposed. In minimum attention control, the `attention' that a control task requires is minimised, and in anytime attention control, the performance under the `attention' given by a scheduler is maximised. In this context, `attention' is interpreted as the inverse of the time elapsed between two consecutive executions of a control task. The two control problems are solved by formulating them as linear programs, which can be solved efficiently in an online fashion. This offers a new and elegant way to solve both the minimum attention control problem and the anytime attention control problem in one unifying framework. The contributions presented in this thesis can form a basis for future research explorations that can eventually lead to a mature system theory for both NCSs and ETC systems, which are indispensable for the deployment of NCSs and ETC systems in a large variety of practical control applications

    On Resilient Control for Secure Connected Vehicles: A Hybrid Systems Approach

    Get PDF
    According to the Internet of Things Forecast conducted by Ericsson, connected devices will be around 29 billion by 2022. This technological revolution enables the concept of Cyber-Physical Systems (CPSs) that will transform many applications, including power-grid, transportation, smart buildings, and manufacturing. Manufacturers and institutions are relying on technologies related to CPSs to improve the efficiency and performances of their products and services. However, the higher the number of connected devices, the higher the exposure to cybersecurity threats. In the case of CPSs, successful cyber-attacks can potentially hamper the economy and endanger human lives. Therefore, it is of paramount importance to develop and adopt resilient technologies that can complement the existing security tools to make CPSs more resilient to cyber-attacks. By exploiting the intrinsically present physical characteristics of CPSs, this dissertation employs dynamical and control systems theory to improve the CPS resiliency to cyber-attacks. In particular, we consider CPSs as Networked Control Systems (NCSs), which are control systems where plant and controller share sensing and actuating information through networks. This dissertation proposes novel design procedures that maximize the resiliency of NCSs to network imperfections (i.e., sampling, packet dropping, and network delays) and denial of service (DoS) attacks. We model CPSs from a general point of view to generate design procedures that have a vast spectrum of applicability while creating computationally affordable algorithms capable of real-time performances. Indeed, the findings of this research aspire to be easily applied to several CPSs applications, e.g., power grid, transportation systems, and remote surgery. However, this dissertation focuses on applying its theoretical outcomes to connected and automated vehicle (CAV) systems where vehicles are capable of sharing information via a wireless communication network. In the first part of the dissertation, we propose a set of LMI-based constructive Lyapunov-based tools for the analysis of the resiliency of NCSs, and we propose a design approach that maximizes the resiliency. In the second part of the thesis, we deal with the design of DOS-resilient control systems for connected vehicle applications. In particular, we focus on the Cooperative Adaptive Cruise Control (CACC), which is one of the most popular and promising applications involving CAVs
    • …
    corecore