4,727 research outputs found

    Fault Tolerance in Cellular Automata at High Fault Rates

    Full text link
    A commonly used model for fault-tolerant computation is that of cellular automata. The essential difficulty of fault-tolerant computation is present in the special case of simply remembering a bit in the presence of faults, and that is the case we treat in this paper. We are concerned with the degree (the number of neighboring cells on which the state transition function depends) needed to achieve fault tolerance when the fault rate is high (nearly 1/2). We consider both the traditional transient fault model (where faults occur independently in time and space) and a recently introduced combined fault model which also includes manufacturing faults (which occur independently in space, but which affect cells for all time). We also consider both a purely probabilistic fault model (in which the states of cells are perturbed at exactly the fault rate) and an adversarial model (in which the occurrence of a fault gives control of the state to an omniscient adversary). We show that there are cellular automata that can tolerate a fault rate 1/2ξ1/2 - \xi (with ξ>0\xi>0) with degree O((1/ξ2)log(1/ξ))O((1/\xi^2)\log(1/\xi)), even with adversarial combined faults. The simplest such automata are based on infinite regular trees, but our results also apply to other structures (such as hyperbolic tessellations) that contain infinite regular trees. We also obtain a lower bound of Ω(1/ξ2)\Omega(1/\xi^2), even with purely probabilistic transient faults only

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    Dependability and Survivability Evaluation of a Water Distribution Process with Arcade

    Get PDF
    Among others, drinking water belongs to the socalled critical infrastructures. To ensure that the water production meets current and future societal needs, a systematic and rigorous analysis is needed. In this paper, we report our first experience with dependability analysis of the last phase of a water treatment facility, namely the water distribution. We use the architectural language Arcade to model this facility and use the Arcade toolset to compute three relevant dependability measures: the availability of the water distribution, the reliability, i.e., the probability that the water distribution fails, and the survivability, that is, the ability to recover from disasters. Since survivability is not directly expressible in the Arcade formalism, we show how one can modify the toolchain for the analysis of survivability.\u

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Aftershocks in Modern Perspectives: Complex Earthquake Network, Aging, and Non-Markovianity

    Full text link
    The phenomenon of aftershocks is studied in view of science of complexity. In particular, three different concepts are examined: (i) the complex-network representation of seismicity, (ii) the event-event correlations, and (iii) the effects of long-range memory. Regarding (i), it is shown the clustering coefficient of the complex earthquake network exhibits a peculiar behavior at and after main shocks. Regarding (ii), it is found that aftershocks experience aging, and the associated scaling holds. And regarding (iii), the scaling relation to be satisfied by a class of singular Markovian processes is violated, implying the existence of the long-range memory in processes of aftershocks.Comment: 28 pages, 6 figures and 1 table. Acta Geophysica, in pres

    Fault maintenance trees: reliability centered maintenance via statistical model checking

    Get PDF
    The current trend in infrastructural asset management is towards risk-based (a.k.a. reliability centered) maintenance, promising better performance at lower cost. By maintaining crucial components more intensively than less important ones, dependability increases while costs decrease.\ud \ud This requires good insight into the effect of maintenance on the dependability and associated costs. To gain these insights, we propose a novel framework that integrates fault tree analysis with maintenance. We support a wide range of maintenance procedures and dependability measures, including the system reliability, availability, mean time to failure, as well as the maintenance and failure costs over time, split into different cost components.\ud \ud Technically, our framework is realized via statistical model checking, a state-of-the-art tool for flexible modelling and simulation. Our compositional approach is flexible and extendible. We deploy our framework to two cases from industrial practice: insulated joints, and train compressors

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters
    corecore