3,090 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Modelling, simulation and proportional integral control of a pneumatic motor

    Get PDF
    Researchers have shown a considerable amount of interest in the control of pneumatic drives over the past decade, for two main reasons, firstly, the response of the system is very slow and it is difficult to attain set points due to hysteresis and secondly, the dynamic model of the system is highly non-linear, which greatly complicates controller design and development. To address these problems, two streams of research effort have evolved and these are: (i) using conventional methods to develop a modelling and control strategy, (ii) adopting a strategy that does not require mathematical model of the system. This paper presents an investigation into the modelling and control of an air motor incorporating a pneumatic equivalent of the electric H-bridge. The pneumatic H-bridge has been devised for speed and direction control of the motor. The system characteristics are divided into three regions, namely low speed, medium speed and high speed. The system is highly nonlinear in the low speed region, for which neuro-modelling, simulation and control strategies are developed

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    combining First Principles with deep neural networks

    Get PDF
    JP acknowledges PhD grant SFRD/BD14610472019, This work has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no 101000733 (PROMICON).Numerous studies have reported the use of hybrid semiparametric systems that combine shallow neural networks with First Principles for bioprocess modeling. Here we revisit the general bioreactor hybrid model and introduce some deep learning techniques. Multi-layer networks with varying depths were combined with First Principles equations in the form of deep hybrid models. Deep learning techniques, namely the adaptive moment estimation method (ADAM), stochastic regularization and depth-dependent weights initialization were evaluated in a hybrid modeling context. Modified sensitivity equations are proposed for the computation of gradients in order to reduce CPU time for the training of deep hybrid models. The methods are illustrated with applications to a synthetic dataset and a pilot 50 L MUT+ Pichia pastoris process expressing a single chain antibody fragment. All in all, the results point to a systematic generalization improvement of deep hybrid models over its shallow counterpart. Moreover, the CPU cost to train the deep hybrid models is shown to be lower than for the shallow counterpart. In the pilot 50L MUT+ Pichia pastoris data set, the prediction accuracy was increased by 18.4% and the CPU decreased by 43.4%.publishersversionpublishe

    A Deep Learning Approach to Radio Signal Denoising

    Get PDF
    This paper proposes a Deep Learning approach to radio signal de-noising. This approach is data-driven, thus it allows de-noising signals, corresponding to distinct protocols, without requiring explicit use of expert knowledge, in this way granting higher flexibility. The core component of the Artificial Neural Network architecture used in this work is a Convolutional De-noising AutoEncoder. We report about the performance of the system in spectrogram-based denoising of the protocol preamble across protocols of the IEEE 802.11 family, studied using simulation data. This approach can be used within a machine learning pipeline: the denoised data can be fed to a protocol classifier. A further perspective advantage of using the AutoEncoders in such a pipeline is that they can be co-trained with the downstream classifier (protocol detector), to optimize its accuracy
    corecore