2,357 research outputs found

    Compositional Verification for Autonomous Systems with Deep Learning Components

    Full text link
    As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {\em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain

    SAM-SoS: A stochastic software architecture modeling and verification approach for complex System-of-Systems

    Get PDF
    A System-of-Systems (SoS) is a complex, dynamic system whose Constituent Systems (CSs) are not known precisely at design time, and the environment in which they operate is uncertain. SoS behavior is unpredictable due to underlying architectural characteristics such as autonomy and independence. Although the stochastic composition of CSs is vital to achieving SoS missions, their unknown behaviors and impact on system properties are unavoidable. Moreover, unknown conditions and volatility have significant effects on crucial Quality Attributes (QAs) such as performance, reliability and security. Hence, the structure and behavior of a SoS must be modeled and validated quantitatively to foresee any potential impact on the properties critical for achieving the missions. Current modeling approaches lack the essential syntax and semantics required to model and verify SoS behaviors at design time and cannot offer alternative design choices for better design decisions. Therefore, the majority of existing techniques fail to provide qualitative and quantitative verification of SoS architecture models. Consequently, we have proposed an approach to model and verify Non-Deterministic (ND) SoS in advance by extending the current algebraic notations for the formal models as a hybrid stochastic formalism to specify and reason architectural elements with the required semantics. A formal stochastic model is developed using a hybrid approach for architectural descriptions of SoS with behavioral constraints. Through a model-driven approach, stochastic models are then translated into PRISM using formal verification rules. The effectiveness of the approach has been tested with an end-to-end case study design of an emergency response SoS for dealing with a fire situation. Architectural analysis is conducted on the stochastic model, using various qualitative and quantitative measures for SoS missions. Experimental results reveal critical aspects of SoS architecture model that facilitate better achievement of missions and QAs with improved design, using the proposed approach
    • …
    corecore