1,014 research outputs found

    Stochastic Calculus of Wrapped Compartments

    Get PDF
    The Calculus of Wrapped Compartments (CWC) is a variant of the Calculus of Looping Sequences (CLS). While keeping the same expressiveness, CWC strongly simplifies the development of automatic tools for the analysis of biological systems. The main simplification consists in the removal of the sequencing operator, thus lightening the formal treatment of the patterns to be matched in a term (whose complexity in CLS is strongly affected by the variables matching in the sequences). We define a stochastic semantics for this new calculus. As an application we model the interaction between macrophages and apoptotic neutrophils and a mechanism of gene regulation in E.Coli

    Protein-DNA computation by stochastic assembly cascade

    Full text link
    The assembly of RecA on single-stranded DNA is measured and interpreted as a stochastic finite-state machine that is able to discriminate fine differences between sequences, a basic computational operation. RecA filaments efficiently scan DNA sequence through a cascade of random nucleation and disassembly events that is mechanistically similar to the dynamic instability of microtubules. This iterative cascade is a multistage kinetic proofreading process that amplifies minute differences, even a single base change. Our measurements suggest that this stochastic Turing-like machine can compute certain integral transforms.Comment: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129313/ http://www.pnas.org/content/99/18/11589.abstrac

    Types for BioAmbients

    Get PDF
    The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues). Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour

    DNA Computing by Self-Assembly

    Get PDF
    Information and algorithms appear to be central to biological organization and processes, from the storage and reproduction of genetic information to the control of developmental processes to the sophisticated computations performed by the nervous system. Much as human technology uses electronic microprocessors to control electromechanical devices, biological organisms use biochemical circuits to control molecular and chemical events. The engineering and programming of biochemical circuits, in vivo and in vitro, would transform industries that use chemical and nanostructured materials. Although the construction of biochemical circuits has been explored theoretically since the birth of molecular biology, our practical experience with the capabilities and possible programming of biochemical algorithms is still very young

    Proofreading tile sets: Error correction for algorithmic self-assembly

    Get PDF
    For robust molecular implementation of tile-based algorithmic self-assembly, methods for reducing errors must be developed. Previous studies suggested that by control of physical conditions, such as temperature and the concentration of tiles, errors (ε) can be reduced to an arbitrarily low rate - but at the cost of reduced speed (r) for the self-assembly process. For tile sets directly implementing blocked cellular automata, it was shown that r ≈ βε^2 was optimal. Here, we show that an improved construction, which we refer to as proofreading tile sets, can in principle exploit the cooperativity of tile assembly reactions to dramatically improve the scaling behavior to r ≈ βε and better. This suggests that existing DNA-based molecular tile approaches may be improved to produce macroscopic algorithmic crystals with few errors. Generalizations and limitations of the proofreading tile set construction are discussed

    Modeling and Analyzing Biomolecular Networks

    Get PDF
    The authors argue for the need to model and analyze biological networks at molecular and cellular levels. They propose a computational toolbox for biologists. Central to their approach is the paradigm of hybrid models in which discrete events are combined with continuous differential equations to capture switching behavior

    Process algebra modelling styles for biomolecular processes

    Get PDF
    We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed
    corecore