30,826 research outputs found

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Consistency of a recursive estimate of mixing distributions

    Full text link
    Mixture models have received considerable attention recently and Newton [Sankhy\={a} Ser. A 64 (2002) 306--322] proposed a fast recursive algorithm for estimating a mixing distribution. We prove almost sure consistency of this recursive estimate in the weak topology under mild conditions on the family of densities being mixed. This recursive estimate depends on the data ordering and a permutation-invariant modification is proposed, which is an average of the original over permutations of the data sequence. A Rao--Blackwell argument is used to prove consistency in probability of this alternative estimate. Several simulations are presented, comparing the finite-sample performance of the recursive estimate and a Monte Carlo approximation to the permutation-invariant alternative along with that of the nonparametric maximum likelihood estimate and a nonparametric Bayes estimate.Comment: Published in at http://dx.doi.org/10.1214/08-AOS639 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore