258 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation solves the collision avoidance problem for single- and multi-robot systems where dynamic effects are significant. In many robotic systems (e.g., highly maneuverable and agile unmanned aerial vehicles) the dynamics cannot be ignored and collision avoidance schemes based on kinematic models can result in collisions or provide limited performance, especially at high operating speeds. Herein, real-time, model-based collision avoidance algorithms that explicitly consider the robots' dynamics and perform real-time input changes to alter the trajectory and steer the robot away from potential collisions are developed, implemented, and verified in simulations and physical experiments. Such algorithms are critical in applications where a high degree of autonomy and performance are needed, for example in robot-assisted first response where aerial and/or mobile ground robots are required to maneuver quickly through cluttered and dangerous environments in search of survivors. Firstly, the research extends reciprocal collision avoidance to robots with dynamics by unifying previous approaches to reciprocal collision avoidance under a single, generalized representation using control obstacles. In fact, it is shown how velocity obstacles, acceleration velocity obstacles, continuous control obstacles, and linear quadratic regulator (LQR)-obstacles are special instances of the generalized framework. Furthermore, an extension of control obstacles to general reciprocal collision avoidance for nonlinear, nonhomogeneous systems where the robots may have different state spaces and different nonlinear equations of motion from one another is described. Both simulations and physical experiments are provided for a combination of differential-drive, differential-drive with a trailer, and car-like robots to demonstrate that the approach is capable of letting a nonhomogeneous group of robots with nonlinear equations of motion safely avoid collisions at real-time computation rates. Secondly, the research develops a stochastic collision avoidance algorithm for a tele-operated unmanned aerial vehicle (UAV) that considers uncertainty in the robot's dynamics model and the obstacles' position as measured from sensors. The model-based automatic collision avoidance algorithm is implemented on a custom-designed quadcopter UAV system with on-board computation and the sensor data are processed using a split-and-merge segmentation algorithm and an approximate Minkowski difference. Flight tests are conducted to validate the algorithm's capabilities for providing tele-operated collision-free operation. Finally, a set of human subject studies are performed to quantitatively compare the performance between the model-based algorithm, the basic risk field algorithm (a variant on potential field), and full manual control. The results show that the model-based algorithm performs significantly better than manual control in both the number of collisions and the UAV's average speed, both of which are extremely vital, for example, for UAV-assisted search and rescue applications. Compared to the potential-field-based algorithm, the model-based algorithm allowed the pilot to operate the UAV with higher average speeds

    Sense and avoid using hybrid convolutional and recurrent neural networks

    Get PDF
    This work develops a Sense and Avoid strategy based on a deep learning approach to be used by UAVs using only one electro-optical camera to sense the environment. Hybrid Convolutional and Recurrent Neural Networks (CRNN) are used for object detection, classification and tracking whereas an Extended Kalman Filter (EKF) is considered for relative range estimation. Probabilistic conflict detection and geometric avoidance trajectory are considered for the last stage of this technique. The results show that the considered deep learning approach can work faster than other state-of-the-art computer vision methods. They also show that the collision can be successfully avoided considering design parameters that can be adjusted to adapt to different scenarios

    UAV autonomous collision avoidance approach

    Get PDF
    The conventional sense-and-avoid collision avoidance mode of UAV (unmaned aerial vehicle) lacks applicability and timeliness in a multi-threat environment. In this paper, a new efficient collision avoidance approach for uncertain threat environments derived from the idea of autonomous mental development is proposed. The proposed collision avoidance pattern consists of a sensory layer, a logic layer and a development layer. The threat information is sensed using the sensory layer, and the path planning approach in the logical layer is applied to the output configuration of UAV. In the development phase, the developmental networks approach is used for online learning, training and updating the logical layer so as to form the sense–action mapping, which is stored as the “basic experience” for UAV executing the avoidance manoeuvre. In the implementation phase, the command is executed by matching the sensing information and action base. The simulation results show that the proposed approach has better timeliness compared to the conventional approaches

    Autonomous Collision Avoidance for a Teleoperated UAV Based on a Super-Ellipsoidal Potential Function

    Get PDF
    This thesis presents the design of a super-ellipsoidal potential function (SEPF) that can be used, in a static and dynamic environment, for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of the SEPF, we have the full control over the shape and size of the potential function. In our proposed approach, a teleoperated UAV can not only autonomously avoid collision with surrounding objects but also track the operator\u27 control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAV collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation using virtual robot experimentation platform (v-rep) and Matlab programs and experimentation using a physical quadrotor UAV in a laboratory environment

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches

    Get PDF
    Moving towards autonomy, unmanned vehicles rely heavily on state-of-the-art collision avoidance systems (CAS). A lot of work is being done to make the CAS as safe and reliable as possible, necessitating a comparative study of the recent work in this important area. The paper provides a comprehensive review of collision avoidance strategies used for unmanned vehicles, with the main emphasis on unmanned aerial vehicles (UAV). It is an in-depth survey of different collision avoidance techniques that are categorically explained along with a comparative analysis of the considered approaches w.r.t. different scenarios and technical aspects. This also includes a discussion on the use of different types of sensors for collision avoidance in the context of UAVs

    New Development on Sense and Avoid Strategies for Unmanned Aerial Vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) can carry out more complex civilian and military applications with less cost and more flexibility in comparison of manned aircraft. Mid-air collision thus becomes profoundly important considering the safe operation of air transportation systems, when UAVs are increasingly used more with various applications and share the same airspace with manned air vehicles. To ensure safe flights, UAVs have to configure Sense and Avoid (S&A) systems performing necessary maneuvers to avoid collisions. After analyzing the manner of S&A system, avoidance strategies based on a subset of possible collision scenarios are proposed in this thesis. 1) To avoid a face-to-face intruder, a feasible trajectory is generated by differential geometric guidance, where the constraints of UAV dynamics are considered. 2) The Biogeography Based Optimization (BBO) approach is exploited to generate an optimal trajectory to avoid multiple intruders’ threats in the landing phase. 3) By formulating the collision avoidance problem within a Markov Decision Process (MDP) framework, a desired trajectory is produced to avoid multiple intruders in the 2D plane. 4) MDP optimization method is extended to address the problem of optimal 3D conflict resolution involving multiple aircraft. 5) Considering that the safety of UAVs is directly related to the dynamic constraints, the differential flatness technique is developed to smoothen the optimal trajectory. 6) Energy based controller is designed such that the UAV is capable of following the generated trajectory
    • …
    corecore