623 research outputs found

    Delay Minimizing User Association in Cellular Networks via Hierarchically Well-Separated Trees

    Full text link
    We study downlink delay minimization within the context of cellular user association policies that map mobile users to base stations. We note the delay minimum user association problem fits within a broader class of network utility maximization and can be posed as a non-convex quadratic program. This non-convexity motivates a split quadratic objective function that captures the original problem's inherent tradeoff: association with a station that provides the highest signal-to-interference-plus-noise ratio (SINR) vs. a station that is least congested. We find the split-term formulation is amenable to linearization by embedding the base stations in a hierarchically well-separated tree (HST), which offers a linear approximation with constant distortion. We provide a numerical comparison of several problem formulations and find that with appropriate optimization parameter selection, the quadratic reformulation produces association policies with sum delays that are close to that of the original network utility maximization. We also comment on the more difficult problem when idle base stations (those without associated users) are deactivated.Comment: 6 pages, 5 figures. Submitted on 2013-10-03 to the 2015 IEEE International Conference on Communications (ICC). Accepted on 2015-01-09 to the 2015 IEEE International Conference on Communications (ICC

    Decentralised Learning MACs for Collision-free Access in WLANs

    Get PDF
    By combining the features of CSMA and TDMA, fully decentralised WLAN MAC schemes have recently been proposed that converge to collision-free schedules. In this paper we describe a MAC with optimal long-run throughput that is almost decentralised. We then design two \changed{schemes} that are practically realisable, decentralised approximations of this optimal scheme and operate with different amounts of sensing information. We achieve this by (1) introducing learning algorithms that can substantially speed up convergence to collision free operation; (2) developing a decentralised schedule length adaptation scheme that provides long-run fair (uniform) access to the medium while maintaining collision-free access for arbitrary numbers of stations

    A particle system in interaction with a rapidly varying environment: Mean field limits and applications

    Full text link
    We study an interacting particle system whose dynamics depends on an interacting random environment. As the number of particles grows large, the transition rate of the particles slows down (perhaps because they share a common resource of fixed capacity). The transition rate of a particle is determined by its state, by the empirical distribution of all the particles and by a rapidly varying environment. The transitions of the environment are determined by the empirical distribution of the particles. We prove the propagation of chaos on the path space of the particles and establish that the limiting trajectory of the empirical measure of the states of the particles satisfies a deterministic differential equation. This deterministic differential equation involves the time averages of the environment process. We apply our results to analyze the performance of communication networks where users access some resources using random distributed multi-access algorithms. For these networks, we show that the environment process corresponds to a process describing the number of clients in a certain loss network, which allows us provide simple and explicit expressions of the network performance.Comment: 31 pages, 2 figure

    Resource management in QoS-aware wireless cellular networks

    Get PDF
    2011 Summer.Includes bibliographical references.Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study two types of resource allocation problems in QoS-aware wireless cellular networks. First, we develop a rigorous framework to study opportunistic scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling policies under three common QoS/fairness constraints for multiuser OFDM systems--temporal fairness, utilitarian fairness, and minimum-performance guarantees. To implement these optimal policies efficiently, we provide a modified Hungarian algorithm and a simple suboptimal algorithm. We then propose a generalized opportunistic scheduling framework that incorporates multiple mixed QoS/fairness constraints, including providing both lower and upper bound constraints. Next, taking input queues and channel memory into consideration, we reformulate the transmission scheduling problem as a new class of Markov decision processes (MDPs) with fairness constraints. We investigate the throughput maximization and the delay minimization problems in this context. We study two categories of fairness constraints, namely temporal fairness and utilitarian fairness. We consider two criteria: infinite horizon expected total discounted reward and expected average reward. We derive and prove explicit dynamic programming equations for the above constrained MDPs, and characterize optimal scheduling policies based on those equations. An attractive feature of our proposed schemes is that they can easily be extended to fit different objective functions and other fairness measures. Although we only focus on uplink scheduling, the scheme is equally applicable to the downlink case. Furthermore, we develop an efficient approximation method--temporal fair rollout--to reduce the computational cost

    Analysis of a Reputation System for Mobile Ad-Hoc Networks with Liars

    Get PDF
    The application of decentralized reputation systems is a promising approach to ensure cooperation and fairness, as well as to address random failures and malicious attacks in Mobile Ad-Hoc Networks. However, they are potentially vulnerable to liars. With our work, we provide a first step to analyzing robustness of a reputation system based on a deviation test. Using a mean-field approach to our stochastic process model, we show that liars have no impact unless their number exceeds a certain threshold (phase transition). We give precise formulae for the critical values and thus provide guidelines for an optimal choice of parameters.Comment: 17 pages, 6 figure
    • …
    corecore