392 research outputs found

    Wireless Network Stability in the SINR Model

    Full text link
    We study the stability of wireless networks under stochastic arrival processes of packets, and design efficient, distributed algorithms that achieve stability in the SINR (Signal to Interference and Noise Ratio) interference model. Specifically, we make the following contributions. We give a distributed algorithm that achieves Ω(1log2n)\Omega(\frac{1}{\log^2 n})-efficiency on all networks (where nn is the number of links in the network), for all length monotone, sub-linear power assignments. For the power control version of the problem, we give a distributed algorithm with Ω(1logn(logn+loglogΔ))\Omega(\frac{1}{\log n(\log n + \log \log \Delta)})-efficiency (where Δ\Delta is the length diversity of the link set).Comment: 10 pages, appeared in SIROCCO'1

    Sliding Window Spectrum Sensing for Full-Duplex Cognitive Radios with Low Access-Latency

    Full text link
    In a cognitive radio system the failure of secondary user (SU) transceivers to promptly vacate the channel can introduce significant access-latency for primary or high-priority users (PU). In conventional cognitive radio systems, the backoff latency is exacerbated by frame structures that only allow sensing at periodic intervals. Concurrent transmission and sensing using self-interference suppression has been suggested to improve the performance of cognitive radio systems, allowing decisions to be taken at multiple points within the frame. In this paper, we extend this approach by proposing a sliding-window full-duplex model allowing decisions to be taken on a sample-by-sample basis. We also derive the access-latency for both the existing and the proposed schemes. Our results show that the access-latency of the sliding scheme is decreased by a factor of 2.6 compared to the existing slotted full-duplex scheme and by a factor of approximately 16 compared to a half-duplex cognitive radio system. Moreover, the proposed scheme is significantly more resilient to the destructive effects of residual self-interference compared to previous approaches.Comment: Published in IEEE VTC Spring 2016, Nanjing, Chin

    Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals

    Full text link
    We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound

    When Backpressure Meets Predictive Scheduling

    Full text link
    Motivated by the increasing popularity of learning and predicting human user behavior in communication and computing systems, in this paper, we investigate the fundamental benefit of predictive scheduling, i.e., predicting and pre-serving arrivals, in controlled queueing systems. Based on a lookahead window prediction model, we first establish a novel equivalence between the predictive queueing system with a \emph{fully-efficient} scheduling scheme and an equivalent queueing system without prediction. This connection allows us to analytically demonstrate that predictive scheduling necessarily improves system delay performance and can drive it to zero with increasing prediction power. We then propose the \textsf{Predictive Backpressure (PBP)} algorithm for achieving optimal utility performance in such predictive systems. \textsf{PBP} efficiently incorporates prediction into stochastic system control and avoids the great complication due to the exponential state space growth in the prediction window size. We show that \textsf{PBP} can achieve a utility performance that is within O(ϵ)O(\epsilon) of the optimal, for any ϵ>0\epsilon>0, while guaranteeing that the system delay distribution is a \emph{shifted-to-the-left} version of that under the original Backpressure algorithm. Hence, the average packet delay under \textsf{PBP} is strictly better than that under Backpressure, and vanishes with increasing prediction window size. This implies that the resulting utility-delay tradeoff with predictive scheduling beats the known optimal [O(ϵ),O(log(1/ϵ))][O(\epsilon), O(\log(1/\epsilon))] tradeoff for systems without prediction
    corecore