10,201 research outputs found

    First-order regret bounds for combinatorial semi-bandits

    Get PDF
    We consider the problem of online combinatorial optimization under semi-bandit feedback, where a learner has to repeatedly pick actions from a combinatorial decision set in order to minimize the total losses associated with its decisions. After making each decision, the learner observes the losses associated with its action, but not other losses. For this problem, there are several learning algorithms that guarantee that the learner's expected regret grows as O~(T)\widetilde{O}(\sqrt{T}) with the number of rounds TT. In this paper, we propose an algorithm that improves this scaling to O~(LT)\widetilde{O}(\sqrt{{L_T^*}}), where LTL_T^* is the total loss of the best action. Our algorithm is among the first to achieve such guarantees in a partial-feedback scheme, and the first one to do so in a combinatorial setting.Comment: To appear at COLT 201

    Rate of Price Discovery in Iterative Combinatorial Auctions

    Full text link
    We study a class of iterative combinatorial auctions which can be viewed as subgradient descent methods for the problem of pricing bundles to balance supply and demand. We provide concrete convergence rates for auctions in this class, bounding the number of auction rounds needed to reach clearing prices. Our analysis allows for a variety of pricing schemes, including item, bundle, and polynomial pricing, and the respective convergence rates confirm that more expressive pricing schemes come at the cost of slower convergence. We consider two models of bidder behavior. In the first model, bidders behave stochastically according to a random utility model, which includes standard best-response bidding as a special case. In the second model, bidders behave arbitrarily (even adversarially), and meaningful convergence relies on properly designed activity rules

    Greed Works -- Online Algorithms For Unrelated Machine Stochastic Scheduling

    Get PDF
    This paper establishes performance guarantees for online algorithms that schedule stochastic, nonpreemptive jobs on unrelated machines to minimize the expected total weighted completion time. Prior work on unrelated machine scheduling with stochastic jobs was restricted to the offline case, and required linear or convex programming relaxations for the assignment of jobs to machines. The algorithms introduced in this paper are purely combinatorial. The performance bounds are of the same order of magnitude as those of earlier work, and depend linearly on an upper bound on the squared coefficient of variation of the jobs' processing times. Specifically for deterministic processing times, without and with release times, the competitive ratios are 4 and 7.216, respectively. As to the technical contribution, the paper shows how dual fitting techniques can be used for stochastic and nonpreemptive scheduling problems.Comment: Preliminary version appeared in IPCO 201

    Designing cost-sharing methods for Bayesian games

    Get PDF
    We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players

    Supply chain collaboration

    Get PDF
    In the past, research in operations management focused on single-firm analysis. Its goal was to provide managers in practice with suitable tools to improve the performance of their firm by calculating optimal inventory quantities, among others. Nowadays, business decisions are dominated by the globalization of markets and increased competition among firms. Further, more and more products reach the customer through supply chains that are composed of independent firms. Following these trends, research in operations management has shifted its focus from single-firm analysis to multi-firm analysis, in particular to improving the efficiency and performance of supply chains under decentralized control. The main characteristics of such chains are that the firms in the chain are independent actors who try to optimize their individual objectives, and that the decisions taken by a firm do also affect the performance of the other parties in the supply chain. These interactions among firms’ decisions ask for alignment and coordination of actions. Therefore, game theory, the study of situations of cooperation or conflict among heterogenous actors, is very well suited to deal with these interactions. This has been recognized by researchers in the field, since there are an ever increasing number of papers that applies tools, methods and models from game theory to supply chain problems

    Matroid Online Bipartite Matching and Vertex Cover

    Full text link
    The Adwords and Online Bipartite Matching problems have enjoyed a renewed attention over the past decade due to their connection to Internet advertising. Our community has contributed, among other things, new models (notably stochastic) and extensions to the classical formulations to address the issues that arise from practical needs. In this paper, we propose a new generalization based on matroids and show that many of the previous results extend to this more general setting. Because of the rich structures and expressive power of matroids, our new setting is potentially of interest both in theory and in practice. In the classical version of the problem, the offline side of a bipartite graph is known initially while vertices from the online side arrive one at a time along with their incident edges. The objective is to maintain a decent approximate matching from which no edge can be removed. Our generalization, called Matroid Online Bipartite Matching, additionally requires that the set of matched offline vertices be independent in a given matroid. In particular, the case of partition matroids corresponds to the natural scenario where each advertiser manages multiple ads with a fixed total budget. Our algorithms attain the same performance as the classical version of the problems considered, which are often provably the best possible. We present 11/e1-1/e-competitive algorithms for Matroid Online Bipartite Matching under the small bid assumption, as well as a 11/e1-1/e-competitive algorithm for Matroid Online Bipartite Matching in the random arrival model. A key technical ingredient of our results is a carefully designed primal-dual waterfilling procedure that accommodates for matroid constraints. This is inspired by the extension of our recent charging scheme for Online Bipartite Vertex Cover.Comment: 19 pages, to appear in EC'1
    corecore