5,468 research outputs found

    Modelling network travel time reliability under stochastic demand

    Get PDF
    A technique is proposed for estimating the probability distribution of total network travel time, in the light of normal day-to-day variations in the travel demand matrix over a road traffic network. A solution method is proposed, based on a single run of a standard traffic assignment model, which operates in two stages. In stage one, moments of the total travel time distribution are computed by an analytic method, based on the multivariate moments of the link flow vector. In stage two, a flexible family of density functions is fitted to these moments. It is discussed how the resulting distribution may in practice be used to characterise unreliability. Illustrative numerical tests are reported on a simple network, where the method is seen to provide a means for identifying sensitive or vulnerable links, and for examining the impact on network reliability of changes to link capacities. Computational considerations for large networks, and directions for further research, are discussed

    Microsimulation models incorporating both demand and supply dynamics

    Get PDF
    There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework. The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamic

    Towards Developing a Travel Time Forecasting Model for Location-Based Services: a Review

    Get PDF
    Travel time forecasting models have been studied intensively as a subject of Intelligent Transportation Systems (ITS), particularly in the topics of advanced traffic management systems (ATMS), advanced traveler information systems (ATIS), and commercial vehicle operations (CVO). While the concept of travel time forecasting is relatively simple, it involves a notably complicated task of implementing even a simple model. Thus, existing forecasting models are diverse in their original formulations, including mathematical optimizations, computer simulations, statistics, and artificial intelligence. A comprehensive literature review, therefore, would assist in formulating a more reliable travel time forecasting model. On the other hand, geographic information systems (GIS) technologies primarily provide the capability of spatial and network database management, as well as technology management. Thus, GIS could support travel time forecasting in various ways by providing useful functions to both the managers in transportation management and information centers (TMICs) and the external users. Thus, in developing a travel time forecasting model, GIS could play important roles in the management of real-time and historical traffic data, the integration of multiple subsystems, and the assistance of information management. The purpose of this paper is to review various models and technologies that have been used for developing a travel time forecasting model with geographic information systems (GIS) technologies. Reviewed forecasting models in this paper include historical profile approaches, time series models, nonparametric regression models, traffic simulations, dynamic traffic assignment models, and neural networks. The potential roles and functions of GIS in travel time forecasting are also discussed.

    Optimization of headway, stops, and time points considering stochastic bus arrivals

    Get PDF
    With the capability to transport a large number of passengers, public transit acts as an important role in congestion reduction and energy conservation. However, the quality of transit service, in terms of accessibility and reliability, significantly affects model choices of transit users. Unreliable service will cause extra wait time to passengers because of headway irregularity at stops, as well as extra recovery time built into schedule and additional cost to operators because of ineffective utilization of allocated resources. This study aims to optimize service planning and improve reliability for a fixed bus route, yielding maximum operator’s profit. Three models are developed to deal with different systems. Model I focuses on a feeder transit route with many-to-one demand patterns, which serves to prove the concept that headway variance has a significant influence on the operator profit and optimal stop/headway configuration. It optimizes stop spacing and headway for maximum operator’s profit under the consideration of demand elasticity. With a discrete modelling approach, Model II optimizes actual stop locations and dispatching headway for a conventional transit route with many-to-many demand patterns. It is applied for maximizing operator profit and improving service reliability considering elasticity of demand with respect to travel time. In the second model, the headway variance is formulated to take into account the interrelationship of link travel time variation and demand fluctuation over space and time. Model III is developed to optimize the number and locations of time points with a headway-based vehicle controlling approach. It integrates a simulation model and an optimization model with two objectives - minimizing average user cost and minimizing average operator cost. With the optimal result generated by Model II, the final model further enhances system performance in terms of headway regularity. Three case studies are conducted to test the applicability of the developed models in a real world bus route, whose demand distribution is adjusted to fit the data needs for each model. It is found that ignoring the impact of headway variance in service planning optimization leads to poor decision making (i.e., not cost-effective). The results show that the optimized headway and stops effectively improve operator’s profit and elevate system level of service in terms of reduced headway coefficient of variation at stops. Moreover, the developed models are flexible for both planning of a new bus route and modifying an existing bus route for better performance

    A game-theoretic approach for reliability evaluation of public transportation transfers with stochastic features

    Get PDF
    A game-theoretic approach based on the framework of transferable-utility cooperative games is developed to assess the reliability of transfer nodes in public transportation networks in the case of stochastic transfer times. A cooperative game is defined, whose model takes into account the public transportation system, the travel times, the transfers and the associated stochastic transfer times, and the users’ demand. The transfer stops are modeled as the players of such a game, and the Shapley value – a solution concept in cooperative game theory – is used to identify their centrality and relative importance. Theoretical properties of the model are analyzed. A two-level Monte Carlo approximation of the vector of Shapley values associated with the nodes is introduced, which is efficient and able to take into account the stochastic features of the transportation network. The performance of the algorithm is investigated, together with that of its distributed computing variation. The usefulness of the proposed approach for planners and policy makers is shown with a simple example and on a case study from the public transportation network of Auckland, New Zealand

    Service Reliability Measurement Using Automated Fare Card Data Application to the London Underground

    Get PDF
    This paper explores the potential of using automated fare card data to quantify the reliability of service as experienced by passengers of rail transit systems. The distribution of individual passenger journey times can be accurately estimated for those systems requiring both entry and exit fare card validation. With the use of this information, a set of service reliability measures is developed that can be used to routinely monitor performance, gain insights into the causes of unreliability, and serve as an input into the evaluation of transit service. An estimation methodology is proposed that classifies performance into typical and nonrecurring conditions, which allows analysts to estimate the level of unreliability attributable to incidents. The proposed measures are used to characterize the reliability of one line in the London Underground under typical and incident-affected conditions with the use of data from the Oyster smartcard system for the morning peak period. A validation of the methodology with the use of incident-log data confirms that a large proportion of the unreliability experienced by passengers can be attributed to incidentrelated disruptions. In addition, the study revealed that the perceived reliability component of the typical Underground trip exceeds its platform wait time component and equals about half of its on-train travel time as well as its station access and egress time components, suggesting that sizable improvements in overall service quality can be attained through reliability improvements
    • …
    corecore