3,418 research outputs found

    Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems

    Full text link
    Stabilization of non-stationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in information theory and control theory literature since 1970s, with a renewed interest in the past decade. There have also been studies on non-causal and causal coding of unstable/non-stationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (non-stationary) possibly multi-dimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.Comment: To appear in IEEE Transactions on Information Theor

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Mini-Workshop: Entropy, Information and Control

    Get PDF
    This mini-workshop was motivated by the emerging field of networked control, which combines concepts from the disciplines of control theory, information theory and dynamical systems. Many current approaches to networked control simplify one or more of these three aspects, for instance by assuming no dynamical disturbances, or noiseless communication channels, or linear dynamics. The aim of this meeting was to approach a common understanding of the relevant results and techniques from each discipline in order to study the major, multi-disciplinary problems in networked control

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure
    corecore