536 research outputs found

    A Three-Step Methodology to Improve Domestic Energy Efficiency

    Get PDF
    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of technologies have been developed to improve this efficiency. Next to large scale technologies such as windturbine parks, domestic technologies are developed. These domestic technologies can be divided in 1) Distributed Generation (DG), 2) Energy Storage and 3) Demand Side Load Management. Control algorithms optimizing a combination of these techniques can raise the energy reduction potential of the individual techniques. In this paper an overview of current research is given and a general concept is deducted. Based on this concept, a three-step optimization methodology is proposed using 1) offline local prediction, 2) offline global planning and 3) online local scheduling. The paper ends with results of simulations and field tests showing that the methodology is promising.\u

    Learning Schemes for Power System Protection

    Get PDF
    In this paper, learning algorithms are leveraged to advance power system protection. Advancements in power system protection have come in different forms such as the development of new control strategies and the introduction of a new system architecture such as a microgrid. In this paper, we propose two learning schemes to make accurate predictions and optimal decisions related to power system protection and microgrid control. First, we present a neural network approach to learn a classifier that can predict stable reconnection timings for an islanded sub-network. Second, we present a learning-based control scheme for power system protection based on the policy rollout. In the proposed scheme, we incorporate online simulation using the commercial PSS/e simulator. Optimal decisions are obtained in real time to prevent cascading failures as well as maximize the load served. We validate our methods with the dynamics simulator and test cases RTS-96 and Poland

    Optimization of Aggregators Energy Resources considering Local Markets and Electric Vehicle Penetration

    Get PDF
    O sector elétrico tem vindo a evoluir ao longo do tempo. Esta situação deve-se ao facto de surgirem novas metodologias para lidarem com a elevada penetração dos recursos energéticos distribuídos (RED), principalmente veículos elétricos (VEs). Neste caso, a gestão dos recursos energéticos tornou-se mais proeminente devido aos avanços tecnológicos que estão a ocorrer, principalmente no contexto das redes inteligentes. Este facto torna-se importante, devido à incerteza decorrente deste tipo de recursos. Para resolver problemas que envolvem variabilidade, os métodos baseados na inteligência computacional estão a se tornar os mais adequados devido à sua fácil implementação e baixo esforço computacional, mais precisamente para o caso tratado na tese, algoritmos de computação evolucionária (CE). Este tipo de algoritmo tenta imitar o comportamento observado na natureza. Ao contrário dos métodos determinísticos, a CEé tolerante à incerteza; ou seja, é adequado para resolver problemas relacionados com os sistemas energéticos. Estes sistemas são geralmente de grandes dimensões, com um número crescente de variáveis e restrições. Aqui a IC permite obter uma solução quase ótima em tempo computacional aceitável com baixos requisitos de memória. O principal objetivo deste trabalho foi propor um modelo para a programação dos recursos energéticos dos recursos dedicados para o contexto intradiário, para a hora seguinte, partindo inicialmente da programação feita para o dia seguinte, ou seja, 24 horas para o dia seguinte. Esta programação é feita por cada agregador (no total cinco) através de meta-heurísticas, com o objetivo de minimizar os custos ou maximizar os lucros. Estes agregadores estão inseridos numa cidade inteligente com uma rede de distribuição de 13 barramentos com elevada penetração de RED, principalmente energia renovável e VEs (2000 VEs são considerados nas simulações). Para modelar a incerteza associada ao RED e aos preços de mercado, vários cenários são gerados através da simulação de Monte Carlo usando as funções de distribuição de probabilidade de erros de previsão, neste caso a função de distribuição normal para o dia seguinte. No que toca à incerteza no modelo para a hora seguinte, múltiplos cenários são gerados a partir do cenário com maior probabilidade do dia seguinte. Neste trabalho, os mercados locais de eletricidade são também utilizados como estratégia para satisfazer a equação do balanço energético onde os agregadores vão para vender o excesso de energia ou comprar para satisfazer o consumo. Múltiplas metaheurísticas de última geração são usadas para fazer este escalonamento, nomeadamente Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with Normal-Cauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA). Os resultados mostram que o modelo proposto é eficaz para os múltiplos agregadores com variações de custo na sua maioria abaixo dos 5% em relação ao dia seguinte, exceto para o agregador e de VEs. É também aplicado um teste Wilcoxon para comparar o desempenho do algoritmo CUMDANCauchy++ com as restantes meta-heurísticas. O CUMDANCauchy++ mostra resultados competitivos tendo melhor performance que todos os algoritmos para todos os agregadores exceto o DEEDA que apresenta resultados semelhantes. Uma estratégia de aversão ao risco é implementada para um agregador no contexto do dia seguinte para se obter uma solução mais segura e robusta. Os resultados mostram um aumento de quase 4% no investimento, mas uma redução de até 14% para o custo dos piores cenários.The electrical sector has been evolving. This situation is because new methodologies emerge to deal with the high penetration of distributed energy resources (DER), mainly electric vehicles (EVs). In this case, energy resource management has become increasingly prominent due to the technological advances that are taking place, mainly in the context of smart grids. This factor becomes essential due to the uncertainty of this type of resource. To solve problems involving variability, methods based on computational intelligence (CI) are becoming the most suitable because of their easy implementation and low computational effort, more precisely for the case treated in this thesis, evolutionary computation (EC) algorithms. This type of algorithm tries to mimic behavior observed in nature. Unlike deterministic methods, the EC is tolerant of uncertainty, and thus it is suitable for solving problems related to energy systems. These systems are usually of high dimensions, with an increased number of variables and restrictions. Here the CI allows obtaining a near-optimal solution in good computational time with low memory requirements. This work's main objective is to propose a model for the energy resource scheduling of the dedicated resources for the intraday context, for the our-ahead, starting initially from the scheduling done for the day ahead, that is, 24 hours for the next day. This scheduling is done by each aggregator (in total five) through metaheuristics to minimize the costs or maximize the profits. These aggregators are inserted in a smart city with a distribution network of 13 buses with a high penetration of DER, mainly renewable energy and EVs (2000 EVs are considered in the simulations). Several scenarios are generated through Monte Carlo Simulation using the forecast errors' probability distribution functions, the normal distribution function for the day-ahead to model the uncertainty associated with DER and market prices. Multiple scenarios are developed through the highest probability scenario from the day-ahead when it comes to intraday uncertainty. In this work, local electricity markets are used as a mechanism to satisfy the energy balance equation where each aggregator can sell the excess of energy or buy more to meet the demand. Several recent and modern metaheuristics are used to solve the proposed problems in the thesis, namely Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with NormalCauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA). Results show that the proposed model is effective for the multiple aggregators. The metaheuristics present satisfactory results and mostly less than 5% variation in costs from the day-ahead except for the EV aggregator. A Wilcoxon test is also applied to compare the performance of the CUMDANCauchy++ algorithm with the remaining metaheuristics. CUMDANCauchy++ shows competitive results beating all algorithms in all aggregators except for DEEDA, which presents similar results. A risk aversion strategy is implemented for an aggregator in the day-ahead context to get a safer and more robust solution. Results show an increase of nearly 4% in day-ahead cost but a reduction of up to 14% of worst scenario cost

    Decision Support for Smart Grid Planning and Operation Considering Reliability

    Get PDF
    [ES] Esta tesis aporta contribuciones a los temas de los sistemas de energía y la movilidad eléctrica. Por lo tanto, se proponen soluciones innovadoras para la planificación de la red de distribución radial tradicional sin o con pocas unidades de recursos energéticos distribuidos, y para la planificación, operación, reconfiguración, y gestión de recursos energéticos en redes de distribución en media tensión considerando una alta penetración de los recursos energéticos distribuidos en el contexto de las redes inteligentes. Las preocupaciones sobre la disponibilidad de combustibles fósiles y el aumento de los efectos climático causados por su uso generalizado en la generación de electricidad han llevado a varias políticas e incentivos para atenuar estos problemas. Estas medidas contribuyeron a inversiones considerables en fuentes de energía renovables y motivaron muchas iniciativas de redes inteligentes. Aunque el panorama futuro de los sistemas eléctricos modernos parece muy prometedor, la integración a gran escala de fuentes de energía renovables de naturaleza intermitente, como la eólica y la fotovoltaica, plantea nuevos desafíos y limitaciones en la industria eléctrica actual. Hoy en día, el diseño de la red de distribución no está correctamente preparado para alojar una gran cantidad de fuentes de energía renovables distribuidas. Por lo tanto, los operadores del sistema de distribución reconocen la necesidad de cambiar el diseño de la red mediante la planificación y el refuerzo. A medida que aumenta la penetración de las fuentes de energía renovable, un agregador de energía puede proporcionar una generación y demanda altamente flexibles según lo requiere el paradigma de red inteligente. Además, esta entidad puede permitir lograr una alta integración de la oferta de energía renovable y aumentar el valor para los pequeños productores y consumidores que no pueden negociar directamente en el mercado mayorista. Sin embargo, la entidad agregadora de energía necesita herramientas adecuadas de apoyo a la decisión para superar los desafíos complejos y hacer frente a un gran número de recursos energéticos. Por lo tanto, la gestión de recursos energéticos es crucial para que la entidad agregadora de energía reduzca los costos de operación, aumente de los beneficios, reduzca la huella de carbono y mejore la estabilidad del sistema. En la perspectiva mundial actual, muchas personas se están mudando a las ciudades en busca de una mejor calidad de vida, contribuyendo de esta manera a la continua expansión de las áreas urbanas. En consecuencia, el sector de transportes está jugando un papel crítico en las emisiones de dióxido de carbono. Teniendo en cuenta esto, muchas ventajas medioambientales y económicas pueden ser obtenidas del cambio de los motores de combustión interna a los vehículos eléctricos. Sin embargo, este cambio contribuirá a una carga en la red de distribución, dando lugar a la posibilidad de congestión de la red. Por lo tanto, para facilitar la integración de la carga de los vehículos eléctricos en la red de distribución, un modelo de predicción del comportamiento del usuario de un vehículo eléctrico pode ser una herramienta muy importante. Además, el paradigma de la red inteligente está desafiando la estructura de control y operación convencional diseñado para redes de distribución pasivas. De este modo, la reconfiguración de la red de distribución será una estrategia esencial y significativa para el operador del sistema de distribución. En el estado del arte actual se identificó una falta de modelos, estrategias y herramientas de apoyo a la toma de decisiones adecuadas para los dominios de problemas de planificación, operación y gestión de recursos energéticos de redes de distribución en media tensión con una alta penetración de fuentes de energía distribuidas. Por lo tanto, surgen varios desafíos de investigación que llevan a la necesidad de desarrollar modelos nuevos e innovadores que aborden: a) el impacto de las fuentes de energía renovable y la variabilidad de la demanda en la planificación de la expansión a largo plazo, b) el problema de la gestión de los recursos energéticos a gran escala, teniendo en cuenta la demanda, las fuentes de energía renovables, los vehículos eléctricos y la variabilidad de los precios del mercado, c) el análisis de impacto de los precios de carga dinámicos de los vehículos eléctricos en la operación de la red de distribución y en el comportamiento del usuario del vehículo eléctrico. Además, en el contexto de la red de distribución de media tensión radial tradicional, también se verificó la necesidad de modelos innovadores para mejorar la confiabilidad a través de la identificación de nuevas inversiones en los componentes de la red. Por lo tanto, esta tesis propone soluciones innovadoras para hacer frente a todos estos vacíos y problemas. Para ese propósito, las contribuciones de la tesis, resultan en un innovador sistema de apoyo a la decisión llamado Advanced Decision Support Tool for Smart Grid Planning and Operation (SupporGrid). El SupporGrid se compone de un conjunto de modelos diversificados que juntos contribuyen a manejar la complejidad de la planificación tradicional de las redes de distribución radial (PlanTGrid), y para la planificación (PlanSGrid), operación (OperSGrid), y los problemas de gestión de recursos energéticos (ERMGrid) en redes de distribución de media tensión en el paradigma de red inteligente. PlanTGrid incluye un modelo de planificación de expansión para redes de distribución radial tradicionales para identificar la posibilidad de nuevas inversiones al costo mínimo. La planificación de la expansión a largo plazo de las redes de distribución en un contexto de red inteligente con una alta penetración de fuentes de energía renovables distribuidas y que trata las fuentes de incertidumbre se resuelve mediante el uso PlanSGrid. OperSGrid contiene una herramienta de simulación de viajes de los usuarios de los vehículos eléctricos funcionando en conjunto con un modelo de operación y reconfiguración que utiliza descomposición de Benders y precios marginales para comprender el impacto del precio de carga de energía dinámica en ambos lados: la red de distribución y el usuario de vehículo eléctrico. Para hacer frente a la gestión de recursos energéticos a gran escala con problemas de respuesta a la demanda y sistemas de almacenamiento de energía, así como con la variabilidad de la demanda, las fuentes de energía renovable, los vehículos eléctricos y el precio de mercado, ERMGrid incluye un modelo estocástico de dos etapas. Las metodologías desarrolladas para el sistema de soporte de decisiones se han probado y validado en escenarios realistas. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando alta penetración de recursos energéticos distribuidos y de vehículos eléctricos en el contexto de red inteligente. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando la alta distribución de recursos energéticos y la penetración de vehículos eléctricos. De hecho, este sistema de apoyo a la decisión mejorará el funcionamiento de las redes de distribución de media tensión, permitiendo ahorros para las partes interesadas
    corecore