65 research outputs found

    Decentralized Algorithms for Wasserstein Barycenters

    Get PDF
    In dieser Arbeit beschĂ€ftigen wir uns mit dem Wasserstein Baryzentrumproblem diskreter Wahrscheinlichkeitsmaße sowie mit dem population Wasserstein Baryzentrumproblem gegeben von a FrĂ©chet Mittelwerts von der rechnerischen und statistischen Seiten. Der statistische Fokus liegt auf der SchĂ€tzung der StichprobengrĂ¶ĂŸe von Maßen zur Berechnung einer AnnĂ€herung des FrĂ©chet Mittelwerts (Baryzentrum) der Wahrscheinlichkeitsmaße mit einer bestimmten Genauigkeit. FĂŒr empirische Risikominimierung (ERM) wird auch die Frage der Regularisierung untersucht zusammen mit dem Vorschlag einer neuen Regularisierung, die zu den besseren KomplexitĂ€tsgrenzen im Vergleich zur quadratischen Regularisierung beitrĂ€gt. Der Rechenfokus liegt auf der Entwicklung von dezentralen Algorithmen zurBerechnung von Wasserstein Baryzentrum: duale Algorithmen und Sattelpunktalgorithmen. Die Motivation fĂŒr duale Optimierungsmethoden ist geschlossene Formen fĂŒr die duale Formulierung von entropie-regulierten Wasserstein Distanz und ihren Derivaten, wĂ€hrend, die primale Formulierung nur in einigen FĂ€llen einen Ausdruck in geschlossener Form hat, z.B. fĂŒr Gaußsches Maß. Außerdem kann das duale Orakel, das den Gradienten der dualen Darstellung fĂŒr die entropie-regulierte Wasserstein Distanz zurĂŒckgibt, zu einem gĂŒnstigeren Preis berechnet werden als das primale Orakel, das den Gradienten der (entropie-regulierten) Wasserstein Distanz zurĂŒckgibt. Die Anzahl der dualen Orakel rufe ist in diesem Fall ebenfalls weniger, nĂ€mlich die Quadratwurzel der Anzahl der primalen Orakelrufe. Im Gegensatz zum primalen Zielfunktion, hat das duale Zielfunktion Lipschitz-stetig Gradient aufgrund der starken KonvexitĂ€t regulierter Wasserstein Distanz. Außerdem untersuchen wir die Sattelpunktformulierung des (nicht regulierten) Wasserstein Baryzentrum, die zum Bilinearsattelpunktproblem fĂŒhrt. Dieser Ansatz ermöglicht es uns auch, optimale KomplexitĂ€tsgrenzen zu erhalten, und kann einfach in einer dezentralen Weise prĂ€sentiert werden.In this thesis, we consider the Wasserstein barycenter problem of discrete probability measures as well as the population Wasserstein barycenter problem given by a FrĂ©chet mean from computational and statistical sides. The statistical focus is estimating the sample size of measures needed to calculate an approximation of a FrĂ©chet mean (barycenter) of probability distributions with a given precision. For empirical risk minimization approaches, the question of the regularization is also studied along with proposing a new regularization which contributes to the better complexity bounds in comparison with the quadratic regularization. The computational focus is developing decentralized algorithms for calculating Wasserstein barycenters: dual algorithms and saddle point algorithms. The motivation for dual approaches is closed-forms for the dual formulation of entropy-regularized Wasserstein distances and their derivatives, whereas the primal formulation has a closed-form expression only in some cases, e.g., for Gaussian measures.Moreover, the dual oracle returning the gradient of the dual representation forentropy-regularized Wasserstein distance can be computed for a cheaper price in comparison with the primal oracle returning the gradient of the (entropy-regularized) Wasserstein distance. The number of dual oracle calls in this case will be also less, i.e., the square root of the number of primal oracle calls. Furthermore, in contrast to the primal objective, the dual objective has Lipschitz continuous gradient due to the strong convexity of regularized Wasserstein distances. Moreover, we study saddle-point formulation of the non-regularized Wasserstein barycenter problem which leads to the bilinear saddle-point problem. This approach also allows us to get optimal complexity bounds and it can be easily presented in a decentralized setup

    Distributed optimization with quantization for computing Wasserstein barycenters

    Get PDF
    We study the problem of the decentralized computation of entropy-regularized semi-discrete Wasserstein barycenters over a network. Building upon recent primal-dual approaches, we propose a sampling gradient quantization scheme that allows efficient communication and computation of approximate barycenters where the factor distributions are stored distributedly on arbitrary networks. The communication and algorithmic complexity of the proposed algorithm are shown, with explicit dependency on the size of the support, the number of distributions, and the desired accuracy. Numerical results validate our algorithmic analysis

    Decentralized Distributed Optimization for Saddle Point Problems

    Full text link
    We consider distributed convex-concave saddle point problems over arbitrary connected undirected networks and propose a decentralized distributed algorithm for their solution. The local functions distributed across the nodes are assumed to have global and local groups of variables. For the proposed algorithm we prove non-asymptotic convergence rate estimates with explicit dependence on the network characteristics. To supplement the convergence rate analysis, we propose lower bounds for strongly-convex-strongly-concave and convex-concave saddle-point problems over arbitrary connected undirected networks. We illustrate the considered problem setting by a particular application to distributed calculation of non-regularized Wasserstein barycenters

    Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass Transport

    Full text link
    In this work, we propose a novel method for quantifying distances between Toeplitz structured covariance matrices. By exploiting the spectral representation of Toeplitz matrices, the proposed distance measure is defined based on an optimal mass transport problem in the spectral domain. This may then be interpreted in the covariance domain, suggesting a natural way of interpolating and extrapolating Toeplitz matrices, such that the positive semi-definiteness and the Toeplitz structure of these matrices are preserved. The proposed distance measure is also shown to be contractive with respect to both additive and multiplicative noise, and thereby allows for a quantification of the decreased distance between signals when these are corrupted by noise. Finally, we illustrate how this approach can be used for several applications in signal processing. In particular, we consider interpolation and extrapolation of Toeplitz matrices, as well as clustering problems and tracking of slowly varying stochastic processes

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows
    • 

    corecore