1,909 research outputs found

    Balancing Relevance and Diversity in Online Bipartite Matching via Submodularity

    Full text link
    In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance---modeled via total weight---of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (\osbm) problem, where the goal is to maximize a submodular function ff over the set of matched edges. This objective is general enough to capture the notion of both diversity (\emph{e.g.,} a weighted coverage function) and relevance (\emph{e.g.,} the traditional linear function)---as well as many other natural objective functions occurring in practice (\emph{e.g.,} limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.Comment: To appear in AAAI 201

    Finish Them!: Pricing Algorithms for Human Computation

    Full text link
    Given a batch of human computation tasks, a commonly ignored aspect is how the price (i.e., the reward paid to human workers) of these tasks must be set or varied in order to meet latency or cost constraints. Often, the price is set up-front and not modified, leading to either a much higher monetary cost than needed (if the price is set too high), or to a much larger latency than expected (if the price is set too low). Leveraging a pricing model from prior work, we develop algorithms to optimally set and then vary price over time in order to meet a (a) user-specified deadline while minimizing total monetary cost (b) user-specified monetary budget constraint while minimizing total elapsed time. We leverage techniques from decision theory (specifically, Markov Decision Processes) for both these problems, and demonstrate that our techniques lead to upto 30\% reduction in cost over schemes proposed in prior work. Furthermore, we develop techniques to speed-up the computation, enabling users to leverage the price setting algorithms on-the-fly

    Blind Multiclass Ensemble Classification

    Get PDF
    The rising interest in pattern recognition and data analytics has spurred the development of innovative machine learning algorithms and tools. However, as each algorithm has its strengths and limitations, one is motivated to judiciously fuse multiple algorithms in order to find the "best" performing one, for a given dataset. Ensemble learning aims at such high-performance meta-algorithm, by combining the outputs from multiple algorithms. The present work introduces a blind scheme for learning from ensembles of classifiers, using a moment matching method that leverages joint tensor and matrix factorization. Blind refers to the combiner who has no knowledge of the ground-truth labels that each classifier has been trained on. A rigorous performance analysis is derived and the proposed scheme is evaluated on synthetic and real datasets.Comment: To appear in IEEE Transactions in Signal Processin
    • …
    corecore