497 research outputs found

    Reliability-oriented optimization of computation offloading for cooperative vehicle-infrastructure systems

    Get PDF
    Computation offloading is critical for mobile applications that are sensitive to computational power, while dynamic and random nature of vehicular networks makes it challenging to guarantee the reliability of vehicular computation offloading. In this letter, we propose a reliability-oriented stochastic optimization model based on dynamic programming for computation offloading in the presence of the deadline constraint on application execution. Specifically, a theoretical lower bound of the expected reliability of computation offloading is derived, and then an optimal data transmission scheduling mechanism is proposed to maximize the lower bound with consideration of randomness in vehicle-to-infrastructure (V2I) communications. Experimental results demonstrate that our mechanism can outperform the conventional scheme and benefits vehicular computation offloading in terms of reliability performance in stochastic situations

    A Survey on UAV-enabled Edge Computing: Resource Management Perspective

    Full text link
    Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.Comment: 36 pages, Accepted to ACM CSU

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    Collaborative Vehicular Edge Computing Networks: Architecture Design and Research Challenges

    Get PDF
    The emergence of augmented reality (AR), autonomous driving and other new applications have greatly enriched the functionality of the vehicular networks. However, these applications usually require complex calculations and large amounts of storage, which puts tremendous pressure on traditional vehicular networks. Mobile edge computing (MEC) is proposed as a prospective technique to extend computing and storage resources to the edge of the network. Combined with MEC, the computing and storage capabilities of the vehicular network can be further enhanced. Therefore, in this paper, we explore the novel collaborative vehicular edge computing network (CVECN) architecture. We first review the work related to MEC and vehicular networks. Then we discuss the design principles of CVECN. Based on the principles, we present the detailed CVECN architecture, and introduce the corresponding functional modules, communication process, as well as the installation and deployment ideas. Furthermore, the promising technical challenges, including collaborative coalition formation, collaborative task offloading and mobility management, are presented. And some potential research issues for future research are highlighted. Finally, simulation results are verified that the proposed CVECN can significantly improve network performance
    • …
    corecore