4,848 research outputs found

    Asynchronous Gossip for Averaging and Spectral Ranking

    Full text link
    We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.Comment: 14 pages, 7 figures. Minor revisio

    Perron-based algorithms for the multilinear pagerank

    Get PDF
    We consider the multilinear pagerank problem studied in [Gleich, Lim and Yu, Multilinear Pagerank, 2015], which is a system of quadratic equations with stochasticity and nonnegativity constraints. We use the theory of quadratic vector equations to prove several properties of its solutions and suggest new numerical algorithms. In particular, we prove the existence of a certain minimal solution, which does not always coincide with the stochastic one that is required by the problem. We use an interpretation of the solution as a Perron eigenvector to devise new fixed-point algorithms for its computation, and pair them with a homotopy continuation strategy. The resulting numerical method is more reliable than the existing alternatives, being able to solve a larger number of problems

    Stochastic Data Clustering

    Full text link
    In 1961 Herbert Simon and Albert Ando published the theory behind the long-term behavior of a dynamical system that can be described by a nearly uncoupled matrix. Over the past fifty years this theory has been used in a variety of contexts, including queueing theory, brain organization, and ecology. In all these applications, the structure of the system is known and the point of interest is the various stages the system passes through on its way to some long-term equilibrium. This paper looks at this problem from the other direction. That is, we develop a technique for using the evolution of the system to tell us about its initial structure, and we use this technique to develop a new algorithm for data clustering.Comment: 23 page
    corecore