1,168 research outputs found

    Solving Multiclass Learning Problems via Error-Correcting Output Codes

    Full text link
    Multiclass learning problems involve finding a definition for an unknown function f(x) whose range is a discrete set containing k &gt 2 values (i.e., k ``classes''). The definition is acquired by studying collections of training examples of the form [x_i, f (x_i)]. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which error-correcting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of overfitting avoidance techniques such as decision-tree pruning. Finally, we show that---like the other methods---the error-correcting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that error-correcting output codes provide a general-purpose method for improving the performance of inductive learning programs on multiclass problems.Comment: See http://www.jair.org/ for any accompanying file

    Inhibition in multiclass classification

    Get PDF
    The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems. These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches

    Inhibition in multiclass classification

    Get PDF
    The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems. These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches

    On the design of an ECOC-compliant genetic algorithm

    Get PDF
    Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches

    The severity of stages estimation during hemorrhage using error correcting output codes method

    Get PDF
    As a beneficial component with critical impact, computer-aided decision making systems have infiltrated many fields, such as economics, medicine, architecture and agriculture. The latent capabilities for facilitating human work propel high-speed development of such systems. Effective decisions provided by such systems greatly reduce the expense of labor, energy, budget, etc. The computer-aided decision making system for traumatic injuries is one type of such systems that supplies suggestive opinions when dealing with the injuries resulted from accidents, battle, or illness. The functions may involve judging the type of illness, allocating the wounded according to battle injuries, deciding the severity of symptoms for illness or injuries, managing the resources in the context of traumatic events, etc. The proposed computer-aided decision making system aims at estimating the severity of blood volume loss. Specifically speaking, accompanying many traumatic injuries, severe hemorrhage, a potentially life-threatening condition that requires immediate treatment, is a significant loss of blood volume in process resulting in decreased blood and oxygen perfusion of vital organs. Hemorrhage and blood loss can occur in different levels such as mild, moderate, or severe. Our proposed system will assist physicians by estimating information such as the severity of blood volume loss and hemorrhage , so that timely measures can be taken to not only save lives but also reduce the long-term complications as well as the cost caused by unmatched operations and treatments. The general framework of the proposed research contains three tasks and many novel and transformative concepts are integrated into the system. First is the preprocessing of the raw signals. In this stage, adaptive filtering is adopted and customized to filter noise, and two detection algorithms (QRS complex detection and Systolic/Diastolic wave detection) are designed. The second process is to extract features. The proposed system combines features from time domain, frequency domain, nonlinear analysis, and multi-model analysis to better represent the patterns when hemorrhage happens. Third, a machine learning algorithm is designed for classification of patterns. A novel machine learning algorithm, as a new version of error correcting output code (ECOC), is designed and investigated for high accuracy and real-time decision making. The features and characteristics of this machine learning method are essential for the proposed computer-aided trauma decision making system. The proposed system is tested agasint Lower Body Negative Pressure (LBNP) dataset, and the results indicate the accuracy and reliability of the proposed system

    Evaluation of Output Embeddings for Fine-Grained Image Classification

    Full text link
    Image classification has advanced significantly in recent years with the availability of large-scale image sets. However, fine-grained classification remains a major challenge due to the annotation cost of large numbers of fine-grained categories. This project shows that compelling classification performance can be achieved on such categories even without labeled training data. Given image and class embeddings, we learn a compatibility function such that matching embeddings are assigned a higher score than mismatching ones; zero-shot classification of an image proceeds by finding the label yielding the highest joint compatibility score. We use state-of-the-art image features and focus on different supervised attributes and unsupervised output embeddings either derived from hierarchies or learned from unlabeled text corpora. We establish a substantially improved state-of-the-art on the Animals with Attributes and Caltech-UCSD Birds datasets. Most encouragingly, we demonstrate that purely unsupervised output embeddings (learned from Wikipedia and improved with fine-grained text) achieve compelling results, even outperforming the previous supervised state-of-the-art. By combining different output embeddings, we further improve results.Comment: @inproceedings {ARWLS15, title = {Evaluation of Output Embeddings for Fine-Grained Image Classification}, booktitle = {IEEE Computer Vision and Pattern Recognition}, year = {2015}, author = {Zeynep Akata and Scott Reed and Daniel Walter and Honglak Lee and Bernt Schiele}
    corecore