10,689 research outputs found

    Convex optimization over intersection of simple sets: improved convergence rate guarantees via an exact penalty approach

    Full text link
    We consider the problem of minimizing a convex function over the intersection of finitely many simple sets which are easy to project onto. This is an important problem arising in various domains such as machine learning. The main difficulty lies in finding the projection of a point in the intersection of many sets. Existing approaches yield an infeasible point with an iteration-complexity of O(1/ε2)O(1/\varepsilon^2) for nonsmooth problems with no guarantees on the in-feasibility. By reformulating the problem through exact penalty functions, we derive first-order algorithms which not only guarantees that the distance to the intersection is small but also improve the complexity to O(1/ε)O(1/\varepsilon) and O(1/ε)O(1/\sqrt{\varepsilon}) for smooth functions. For composite and smooth problems, this is achieved through a saddle-point reformulation where the proximal operators required by the primal-dual algorithms can be computed in closed form. We illustrate the benefits of our approach on a graph transduction problem and on graph matching

    From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

    Full text link
    We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of randomized optimization and first order methods, leading to a priori as well as a posterior performance guarantees. We illustrate the generality and implications of our theoretical results in the special case of the long-run average cost and discounted cost optimal control problems for Markov decision processes on Borel spaces. The applicability of the theoretical results is demonstrated through a constrained linear quadratic optimal control problem and a fisheries management problem.Comment: 30 pages, 5 figure

    Distributed Multi-Agent Optimization with State-Dependent Communication

    Get PDF
    We study distributed algorithms for solving global optimization problems in which the objective function is the sum of local objective functions of agents and the constraint set is given by the intersection of local constraint sets of agents. We assume that each agent knows only his own local objective function and constraint set, and exchanges information with the other agents over a randomly varying network topology to update his information state. We assume a state-dependent communication model over this topology: communication is Markovian with respect to the states of the agents and the probability with which the links are available depends on the states of the agents. In this paper, we study a projected multi-agent subgradient algorithm under state-dependent communication. The algorithm involves each agent performing a local averaging to combine his estimate with the other agents' estimates, taking a subgradient step along his local objective function, and projecting the estimates on his local constraint set. The state-dependence of the communication introduces significant challenges and couples the study of information exchange with the analysis of subgradient steps and projection errors. We first show that the multi-agent subgradient algorithm when used with a constant stepsize may result in the agent estimates to diverge with probability one. Under some assumptions on the stepsize sequence, we provide convergence rate bounds on a "disagreement metric" between the agent estimates. Our bounds are time-nonhomogeneous in the sense that they depend on the initial starting time. Despite this, we show that agent estimates reach an almost sure consensus and converge to the same optimal solution of the global optimization problem with probability one under different assumptions on the local constraint sets and the stepsize sequence

    Incremental Stochastic Subgradient Algorithms for Convex Optimization

    Full text link
    In this paper we study the effect of stochastic errors on two constrained incremental sub-gradient algorithms. We view the incremental sub-gradient algorithms as decentralized network optimization algorithms as applied to minimize a sum of functions, when each component function is known only to a particular agent of a distributed network. We first study the standard cyclic incremental sub-gradient algorithm in which the agents form a ring structure and pass the iterate in a cycle. We consider the method with stochastic errors in the sub-gradient evaluations and provide sufficient conditions on the moments of the stochastic errors that guarantee almost sure convergence when a diminishing step-size is used. We also obtain almost sure bounds on the algorithm's performance when a constant step-size is used. We then consider \ram{the} Markov randomized incremental subgradient method, which is a non-cyclic version of the incremental algorithm where the sequence of computing agents is modeled as a time non-homogeneous Markov chain. Such a model is appropriate for mobile networks, as the network topology changes across time in these networks. We establish the convergence results and error bounds for the Markov randomized method in the presence of stochastic errors for diminishing and constant step-sizes, respectively
    • …
    corecore