1,377 research outputs found

    Cost-based linear holding practice and collaborative air traffic flow management under trajectory based operations

    Get PDF
    The current air transportation system is reaching the capacity limit in many countries/regions across the world. It tends to be less efficient or even incapable sometimes to deal with the enormous air traffic demand that continues growing year by year. This has been evidenced by the record-breaking flight delays reported in various places in recent years, which, have resulted in notable economical loses. To mitigate this imbalance between demand and capacity, air traffic flow management (ATFM) is usually one of the most useful options. It regulates traffic flows according to air traffic control capacity while preserving safety and efficiency of flights. ATFM initiatives can be considered well in advance of the flight execution - more than one year earlier - based on air traffic forecasts and capacity plans, and continue in effect, with information updated, to eventually the day of operation. This long effective period will inevitably allow substantial collaboration among different stakeholders, including the ATFM authority, airspace users (AUs), air navigation service providers (ANSPs), airports, etc. Under the forthcoming paradigm of trajectory based operations (TBO), the flight 4-Dimensional trajectory has been anticipated to further enhance the connection between flight planning and execution phases, thus fostering such collaboration in ATFM. Moreover, under nowadays operations, ground holding is a typical measure undertaken in many widely-used ATFM programs. Even though holding on the ground, at the origin airport, has the advantage of fuel efficiency over the air holding, it turns out that its feature of low flexibility would, in some circumstances, affect the ATFM performance. Yet, with proper flight trajectory management, it is also possible to have delay airborne at no extra fuel cost than performing ground holding. This PhD thesis firstly focuses on this trajectory management, specifically on a cost-based linear holding practice. The linear holding is realized progressively along the planned trajectory through precise speed control which can be enabled by aircraft trajectory optimization techniques. Some typical short/mid haul flights are simulated for achieving the maximum airborne delay that can be yielded using same fuel consumption as initially scheduled. Based on this, its potential applicability is demonstrated. A network ATFM model is adapted from the well-studied Bertsimas Stock-Patterson (BSP) model, incorporating different types of delay (including the linear holding) to flexibly handle the traffic flow with a set of given (yet changeable) capacities. In order that the benefits of the model can be fully realized, AUs are required to participate in the decision-making process, submitting for instance the maximum linear holding bound per flight along the planned trajectory. Next, increased AUs' participation is expected for a proposed Collaborative ATFM framework, in which not only various delay initiatives are considered, but also alternative trajectories which allow flights to route out of the identified hotspot areas. A centralized linear programming optimization model then computes for the best trajectory selections and the optimal delay distributions across all concerned flights. Finally, ANSPs' involvement is additionally considered for the framework, through dynamic airspace reconfiguration, further enhancing the collaboration between ATFM stakeholders. As such, the traffic flow regulation and sector opening scheduling are bounded into an integrated optimization model, and thus are conducted in a synchronized way. Results indicate that the performance of demand and capacity balancing can be even improved if compared with the previous ATFM models presented in this PhD thesis.El sistema de transport aeri actual està arribant al seu límit de capacitat en molts països i regions del món. Una gestió del flux de trànsit aeri (ATFM) més adequada podria mitigar aquest desequilibri entre la demanda i la capacitat. La funció de l'ATFM és regular els fluxos de trànsit aeri segons la capacitat de control del trànsit aeri, i alhora assegurar que els vols siguin segurs i eficients. Les regulacions del sistema d'ATFM es poden aplicar molt abans de l'execució del vol més d'un any abans. Un cop aplicades, aquestes regulacions continuaran evolucionant, amb informació actualitzada, fins el dia de la seva execució. El llarg període entre la planificació del vol i la seva execució permetrà una important col·laboració entre els diferents membres implicats, inclosa l'autoritat de l'ATFM, els usuaris de l'espai aeri (AUs), els proveïdors de serveis de navegació aèria (ANSP), els aeroports, etc. En les operacions d'avui en dia l'espera a terra és una de les regulacions que més aplica el sistema d'ATFM per tal d'evitar congestions als aeroports o sectors de l'espai aeri. Tot i que esperar a terra, a l'aeroport d'origen, té l'avantatge de consumir menys combustible que esperar a l'aire a l'aeroport de destí, la seva poca flexibilitat podria afectar negativament al rendiment de l'ATFM en algunes circumstàncies. Tanmateix, amb una gestió adequada de la trajectòria de vol, també és possible efectuar cert retard a l'aire sense cap cost addicional de combustible respecte al que resultaria esperant a terra. Aquesta tesi doctoral s'enfoca en primer lloc en aquesta gestió de trajectòria de vol, específicament en una pràctica d'espera tenint en compte els costos per l'aerolínia. L'espera lineal s'efectua progressivament al llarg de la trajectòria planificada mitjançant un control precís de la velocitat. Les velocitats que generen l'espera desitjada durant el vol és calculen mitjançant tècniques d'optimització. Alguns vols típics de curt i mig abast es simulen per quantificar el màxim retard a l'aire que es podria generar utilitzant el mateix consum de combustible que el previst inicialment. Basant-se en els resultats obtinguts, s'explora la seva aplicabilitat potencial. Es desenvolupa un model de la xarxa d'ATFM basat en el model de Bertsima Stock-Patterson. Com a novetat, el model desenvolupat en aquesta tesi incorpora diferents tipus de retard (incloent-hi l'espera lineal) per gestionar de forma més flexible el flux de trànsit donat un conjunt de capacitats pre-definides. Per tal d'explotar al màxim els beneficis del model proposat en aquesta tesi, les autoritats regionals estan obligades a participar en el procés de presa de decisions, declarant, per exemple, la màxima espera lineal associada a cada vol al llarg de la trajectòria planejada. Tot seguit, s'inclou la participació dels AUs en un sistema d'ATFM col·laboratiu, en el qual no només es consideren diverses tipus de retard per balancejar la capacitat i la demanda, sinó també trajectòries alternatives que permeten que els vols evitin de forma òptima els sectors de l?espai aeri congestionats. Un model d'optimització centralitzat basat en programació lineal calcula les millors seleccions de trajectòria i les distribucions òptimes de retard en tots els vols afectats per la regulació. Es demostra que incloure trajectòries alternatives pot reduir notablement la quantitat de retards. Finalment, es considera també la participació de l'ANSP en el sistema d'ATFM, a través de la configuració dinàmica de l'espai aeri, millorant encara més la col·laboració entre els membres implicats en el sistema. Com a tal, la regulació del flux de trànsit i la programació d'obertura dels diferents sectors de l'espai aeri s'inclouen en un model integrat d'optimització i, per tant, es programen de forma sincronitzada. Els resultats suggereixen que el rendiment del balanc¸ de la demanda i la capacitat es pot millorar encara m´es amb aquest sistema ATFM col·laboratiu complert. El nou model de balanc¸ de demanda i capacitat millora encara ées els resultats, si es compara amb els altres models d’ATFM presentats també en aquesta tesi doctoral.El sistema de transporte aéreo actual está llegando a su límite de capacidad en muchos países y regiones del mundo. Como consecuencia, éste tiende a ser menos eficiente e incluso en ocasiones incapaz de afrontar la enorme demanda de tráfico aéreo que incluso hoy en día crece rápidamente. Este hecho se ha visto evidenciado por los enormes retrasos registrados en diferentes lugares los últimos años, lo cual ha comportado enormes pérdidas económicas para la sociedad. Una gestión del flujo del tráfico aéreo (ATFM) más adecuada podría mitigar este desequilibrio entre la demanda y la capacidad. La función del ATFM es regular los flujos de tráfico aéreo según la capacidad de control del tráfico aéreo, siempre asegurando que los vuelos sean seguros y eficientes. Las regulaciones del sistema de ATFM se pueden aplicar mucho antes de la ejecución del vuelo –más de un año antes– en función de las previsiones de tráfico aéreo y de la capacidad esperada. Una vez aplicadas, estas regulaciones continuarán evolucionando, con información actualizada, hasta el día de su ejecución. El largo periodo entre la planificación del vuelo y su ejecución permitirá una importante colaboración entre los diferentes miembros implicados, incluida la autoridad del ATFM, los usuarios del espacio aéreo (AUs), los proveedores de servicios de navegación aérea (ANSP), los aeropuertos, etc. En el marco del futuro paradigma de las operaciones basadas en trayectorias, la introducción de vuelos con control sobre la trayectoria en las 4 dimensiones espera mejorar aún más la conexión entre las fases de planificación del vuelo y su ejecución, fomentando así la colaboración en el proceso de toma de decisiones del sistema ATFM. En las operaciones de hoy en día la espera en tierra es una de las regulaciones que más se aplica en el sistema de ATFM con el fin de evitar congestiones en los aeropuertos o en los sectores del espacio aéreo. Aun teniendo en cuenta que esperar en tierra, en el aeropuerto de origen, tiene la ventaja de consumir menos combustible que esperar en el aire en el aeropuerto de destino, su poca flexibilidad podría afectar negativamente al rendimiento del ATFM en algunas circunstancias. Aun así, con una gestión adecuada de la trayectoria de vuelo, también es posible efectuar cierto retraso en el aire sin ningún coste adicional de combustible respecto a lo que resultaría esperando en tierra. Esta tesis doctoral se centra en primer lugar en esta gestión de la trayectoria de vuelo, específicamente en una práctica de espera lineal considerando los costes para la aerolínea. La espera lineal se efectúa progresivamente a lo largo de la trayectoria planificada mediante un control preciso de la velocidad. Las velocidades que generan la espera deseada durante el vuelo se calculan mediante técnicas de optimización. Algunos vuelos típicos de corto y medio alcance se simulan para cuantificar el máximo retraso en el aire que se podría generar utilizando el mismo consumo de combustible que el previsto inicialmente. Basándose en los resultados obtenidos, se investiga su potencial aplicabilidad, como por ejemplo mejorar la planificación de programas de flujo del espacio aéreo, y ayudar a neutralizar los retrasos no deseados adicionales debidos a la incertidumbre del sistema. Se desarrolla un modelo de la red de ATFM basado en el conocido modelo Bertsimas Stock-Patterson (BSP). Como novedad, el modelo desarrollado en esta tesis incorpora diferentes tipos de retraso (incluyendo la espera lineal) para gestionar de manera más flexible el flujo de tráfico dado un conjunto de capacidades predefinidas. Con el fin de explotar al máximo los beneficios del modelo propuesto en esta tesis, se asume que las aerolíneas participaran en el proceso de toma de decisiones, declarando, por ejemplo, la máxima espera lineal asociada a cada vuelo a lo largo de la trayectoria planeada. Este concepto se ilustra con un caso de estudio, donde se demuestra una reducción significativa de los retrasos, comparado con el modelo BSP. Seguidamente, se incluye la participación de las aerolíneas en un sistema de ATFM colaborativo, en el cual no tan sólo se consideran diferentes tipos de retrasos para balancear la capacidad y la demanda, sino también trayectorias alternativas que permiten que los vuelos eviten de forma óptima los sectores del espacio aéreo congestionados. Un modelo de optimización centralizado basado en programación lineal calcula las mejores selecciones de la trayectoria y las distribuciones óptimas de retraso en todos los vuelos afectado por la regulación. Se demuestra que incluir trayectorias alternativas puede reducir notablemente la cantidad de retrasos. Finalmente, se considera también la participación de los ANSP en el sistema de ATFM, a través de la configuración dinámica del espacio aéreo, mejorando aún más la colaboración entre los miembros implicados en el sistema. Como tales, la regulación del flujo de tráfico aéreo y la programación de apertura de los diferentes sectores del espacio aéreo se incluyen en un modelo integrado de optimización y, por lo tanto, se programan de manera sincronizada. El nuevo modelo de balance de demanda y capacidad mejora aún más los resultados, si se compara con los otros modelos ATFM presentados también en esta tesis doctoralPostprint (published version

    Optimisation du trafic aérien à l'arrivée dans la zone terminale et dans l'espace aérien étendu

    Get PDF
    Selon les prévisions à long terme du trafic aérien de l'Organisation de l'Aviation Civile Internationale (OACI) en 2018, le trafic mondial de passagers devrait augmenter de 4,2% par an de 2018 à 2038. Bien que l'épidémie de COVID-19 ait eu un impact énorme sur le transport aérien, il se rétablit progressivement. Dès lors, l'efficacité et la sécurité resteront les principales problématiques du trafic aérien, notamment au niveau de la piste qui est le principal goulot d'étranglement du système. Dans le domaine de la gestion du trafic aérien, la zone de manœuvre terminale (TMA) est l'une des zones les plus complexes à gérer. En conséquence, le développement d'outils d'aide à la décision pour gérer l'arrivée des avions est primordial. Dans cette thèse, nous proposons deux approaches d'optimisation qui visent à fournir des solutions de contrôle pour la gestion des arrivées dans la TMA et dans un horizon étendu intégrant la phase en route. Premièrement, nous abordons le problème d'ordonnancement des avions sous incertitude dans la TMA. La quantification et la propagation de l'incertitude le long des routes sont réalisées grâce à un modèle de trajectoire qui représente les informations temporelles sous forme de variables aléatoires. La détection et la résolution des conflits sont effectuées à des points de cheminement d'un réseau prédéfini sur la base des informations temporelles prédites à partir de ce modèle. En minimisant l'espérance du nombre de conflits, les vols peuvent être bien séparés. Outre le modèle proposé, deux autres modèles de la litérrature - un modèle déterministe et un modèle intégrant des marges de séparation - sont présentés comme références. Un recuit simulé (SA) combiné à une fenêtre glissante temporelle est proposé pour résoudre une étude de cas de l'aéroport de Paris Charles de Gaulle (CDG). De plus, un cadre de simulation basé sur l'approche Monte-Carlo est implémenté pour perturber aléatoirement les horaires optimisés des trois modèles afin d'évaluer leurs performances. Les résultats statistiques montrent que le modèle proposé présente des avantages absolus dans l'absorption des conflits en cas d'incertitude. Dans une deuxième partie, nous abordons un problème dynamique basé sur le concept de Gestion des Arrivées Étendue (E-AMAN). L'horizon E-AMAN est étendu jusqu'à 500 NM de l'aéroport de destination permettant ainsi une planification anticipée. Le caractère dynamique est traitée par la mise à jour périodique des informations de trajectoires réelles sur la base de l'approche par horizon glissant. Pour chaque horizon temporel, un sous-problème est établi avec pour objectif une somme pondérée de métriques de sécurité du segment en route et de la TMA. Une approche d'attribution dynamique des poids est proposée pour souligner le fait qu'à mesure qu'un aéronef se rapproche de la TMA, le poids de ses métriques associées à la TMA devrait augmenter. Une étude de cas est réalisée à partir des données réelles de l'aéroport de Paris CDG. Les résultats finaux montrent que grâce à cet ajustement anticipé, les heures d'arrivée des avions sont proches des heures prévues tout en assurant la sécurité et en réduisant les attentes. Dans la troisième partie de cette thèse, on propose un algorithme qui accélère le processus d'optimisation. Au lieu d'évaluer les performances de tous les aéronefs, les performances d'un seul aéronef sont concentrées dans la fonction objectif. Grâce à ce changement, le processus d'optimisation bénéficie d'une évaluation d'objectif rapide et d'une vitesse de convergence élevée. Afin de vérifier l'algorithme proposé, les résultats sont analysés en termes de temps d'exécution et de qualité des résultats par rapport à l'algorithme utilisé à l'origine.According to the long term air traffic forecasts done by International Civil Aviation Organization (ICAO) in 2018, global passenger traffic is expected to grow by 4.2% annually from 2018 to 2038 using the traffic data of 2018 as a baseline. Even though the outbreak of COVID-19 has caused a huge impact on the air transportation, it is gradually restoring. Considering the potential demand in future, air traffic efficiency and safety will remain critical issues to be considered. In the airspace system, the runway is the main bottleneck in the aviation chain. Moreover, in the domain of air traffic management, the Terminal Maneuvering Area (TMA) is one of the most complex areas with all arrivals converging to land. This motivates the development of suitable decision support tools for providing proper advisories for arrival management. In this thesis, we propose two optimization approaches that aim to provide suitable control solutions for arrival management in the TMA and in the extended horizon that includes the TMA and the enroute phase. In the first part of this thesis, we address the aircraft scheduling problem under uncertainty in the TMA. Uncertainty quantification and propagation along the routes are realized in a trajectory model that formulates the time information as random variables. Conflict detection and resolution are performed at waypoints of a predefined network based on the predicted time information from the trajectory model. By minimizing the expected number of conflicts, consecutively operated flights can be well separated. Apart from the proposed model, two other models - the deterministic model and the model that incorporates separation buffers - are presented as benchmarks. Simulated annealing (SA) combined with the time decomposition sliding window approach is used for solving a case study of the Paris Charles de Gaulle (CDG) airport. Further, a simulation framework based on the Monte-Carlo approach is implemented to randomly perturb the optimized schedules of the three models so as to evaluate their performances. Statistical results show that the proposed model has absolute advantages in conflict absorption when uncertainty arises. In the second part of this thesis, we address a dynamic/on-line problem based on the concept of Extended Arrival MANagement (E-AMAN). The E-AMAN horizon is extended up to 500NM from the destination airport so as to enhance the cooperation and situational awareness of the upstream sector control and the TMA control. The dynamic feature is addressed by periodically updating the real aircraft trajectory information based on the rolling horizon approach. For each time horizon, a sub-problem is established taking the weighted sum of safety metrics in the enroute segment and in the TMA as objective. A dynamic weights assignment approach is proposed to emphasize the fact that as an aircraft gets closer to the TMA, the weight for its metrics associated with the TMA should increase. A case study is carried out using the real arrival traffic data of the Paris CDG airport. Final results show that through early adjustment, the arrival time of the aircraft can meet the required schedule for entering the TMA, thus ensuring overall safety and reducing holding time. In the third part of this thesis, an algorithm that expedites the optimization process is proposed. Instead of evaluating the performance of all aircraft, single aircraft performance is focused and a corresponding objective function is created. Through this change, the optimization process benefits from fast evaluation of objective and high convergence speed. In order to verify the proposed algorithm, results are analyzed in terms of execution time and quality of result compared to the originally used algorithm

    Optimal Relative Path Planning for Constrained Stochastic Space Systems

    Get PDF
    Rendezvous and proximity operations for automated spacecraft systems requires advanced path planning techniques that are capable of generating optimal paths. Real-world constraints, such as sensor noise and actuator errors, complicate the planning process. Operations also require flight safety considerations in order to prevent the spacecraft from potentially colliding with the associated companion spacecraft. This work proposes a new, ground-based trajectory planning approach that seeks an optimal trajectory while meeting all mission constraints and accounting for vehicle performance and safety requirements. This approach uses a closed-loop linear covariance simulation of the relative trajectory coupled with a genetic algorithm to determine fuel optimal trajectories. Spacecraft safety is addressed using statistical data from the linear covariance model to bound the probability of collision

    Applications of stochastic modeling in air traffic management:Methods, challenges and opportunities for solving air traffic problems under uncertainty

    Get PDF
    In this paper we provide a wide-ranging review of the literature on stochastic modeling applications within aviation, with a particular focus on problems involving demand and capacity management and the mitigation of air traffic congestion. From an operations research perspective, the main techniques of interest include analytical queueing theory, stochastic optimal control, robust optimization and stochastic integer programming. Applications of these techniques include the prediction of operational delays at airports, pre-tactical control of aircraft departure times, dynamic control and allocation of scarce airport resources and various others. We provide a critical review of recent developments in the literature and identify promising research opportunities for stochastic modelers within air traffic management

    Integrated and joint optimisation of runway-taxiway-apron operations on airport surface

    Get PDF
    Airports are the main bottlenecks in the Air Traffic Management (ATM) system. The predicted 84% increase in global air traffic in the next two decades has rendered the improvement of airport operational efficiency a key issue in ATM. Although the operations on runways, taxiways, and aprons are highly interconnected and interdependent, the current practice is not integrated and piecemeal, and overly relies on the experience of air traffic controllers and stand allocators to manage operations, which has resulted in sub-optimal performance of the airport surface in terms of operational efficiency, capacity, and safety. This thesis proposes a mixed qualitative-quantitative methodology for integrated and joint optimisation of runways, taxiways, and aprons, aiming to improve the efficiency of airport surface operations by integrating the operations of all three resources and optimising their coordination. This is achieved through a two-stage optimisation procedure: (1) the Integrated Apron and Runway Assignment (IARA) model, which optimises the apron and runway allocations for individual aircraft on a pre-tactical level, and (2) the Integrated Dynamic Routing and Off-block (IDRO) model, which generates taxiing routes and off-block timing decisions for aircraft on an operational (real-time) level. This two-stage procedure considers the interdependencies of the operations of different airport resources, detailed network configurations, air traffic flow characteristics, and operational rules and constraints. The proposed framework is implemented and assessed in a case study at Beijing Capital International Airport. Compared to the current operations, the proposed apron-runway assignment reduces total taxiing distance, average taxiing time, taxiing conflicts, runway queuing time and fuel consumption respectively by 15.5%, 15.28%, 45.1%, [58.7%, 35.3%, 16%] (RWY01, RWY36R, RWY36L) and 6.6%; gated assignment is increased by 11.8%. The operational feasibility of this proposed framework is further validated qualitatively by subject matter experts (SMEs). The potential impact of the integrated apron-runway-taxiway operation is explored with a discussion of its real-world implementation issues and recommendations for industrial and academic practice.Open Acces

    Resource Allocation in Air Traffic Flow-Constrained Areas with Stochastic Termination Times

    Get PDF
    In this dissertation we address a stochastic air traffic flow management problem. This problem arises when airspace congestion is predicted, usually because of a weather disturbance, so that the number of flights passing through a volume of airspace (flow constrained area - FCA) must be reduced. We formulate an optimization model for the assignment of dispositions to flights whose preferred flight plans passed through the FCA. For each flight, the disposition can be either to depart as scheduled but via a secondary route thereby avoiding the FCA, or to use the originally intended route but to depart with a controlled (adjusted) departure time and accompanying ground delay. We model the possibility that the capacity of the FCA may increase at some future time once the weather activity clears. The model is a two-stage stochastic program that represents the time of this capacity windfall as a random variable, and determines expected costs given a second-stage decision, conditioning on that time. We also allow the initial reroutes to vary from a conservative or pessimistic approach where all reroutes avoid the weather entirely to an optimistic or hedging strategy where some or all reroute trajectories can presume that the weather will clear by the time the FCA is reached, understanding that a drastic contingency may be necessary later if this turns out not to be true. We conduct experiments allowing a range of such trajectories and draw conclusions regarding appropriate strategies

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Resource-Constrained Airline Ground Operations: Optimizing Schedule Recovery under Uncertainty

    Get PDF
    Die zentrale europäische Verkehrsflusssteuerung (englisch: ATFM) und Luftverkehrsgesellschaften (englisch: Airlines) verwenden unterschiedliche Paradigmen für die Priorisierung von Flügen. Während ATFM jeden Flug als individuelle Einheit betrachtet, um die Kapazitätsauslastung aller Sektoren zu steuern, bewerten Airlines jeden Flug als Teilabschnitt eines Flugzeugumlaufes, eines Crew-Einsatzplanes bzw. einer Passagierroute. Infolgedessen sind ATFM-Zeitfenster für Flüge in Kapazitätsengpässen oft schlecht auf die Ressourcenabhängigkeiten innerhalb eines Airline-Netzwerks abgestimmt, sodass die Luftfahrzeug-Bodenabfertigung – als Verbindungselement bzw. Bruchstelle zwischen einzelnen Flügen im Netzwerk – als Hauptverursacher primärer und reaktionärer Verspätungen in Europa gilt. Diese Dissertation schließt die Lücke zwischen beiden Paradigmen, indem sie ein integriertes Optimierungsmodell für die Flugplanwiederherstellung entwickelt. Das Modell ermöglicht Airlines die Priorisierung zwischen Flügen, die von einem ATFM-Kapazitätsengpass betroffen sind, und berücksichtigt dabei die begrenzte Verfügbarkeit von Abfertigungsressourcen am Flughafen. Weiterhin werden verschiedene Methoden untersucht, um die errechneten Flugprioritäten vertraulich innerhalb von kooperativen Lösungsverfahren mit externen Stakeholdern austauschen zu können. Das integrierte Optimierungsmodell ist eine Erweiterung des Resource-Constrained Project Scheduling Problems und integriert das Bodenprozessmanagement von Luftfahrzeugen mit bestehenden Ansätzen für die Steuerung von Flugzeugumläufen, Crew-Einsatzplänen und Passagierrouten. Das Modell soll der Verkehrsleitzentrale einer Airline als taktische Entscheidungsunterstützung dienen und arbeitet dabei mit einer Vorlaufzeit von mehr als zwei Stunden bis zur nächsten planmäßigen Verkehrsspitze. Systemimmanente Unsicherheiten über Prozessabweichungen und mögliche zukünftige Störungen werden in der Optimierung in Form von stochastischen Prozesszeiten und mittels des neu-entwickelten Konzeptes stochastischer Verspätungskostenfunktionen berücksichtigt. Diese Funktionen schätzen die Kosten der Verspätungsausbreitung im Airline-Netzwerk flugspezifisch auf der Basis historischer Betriebsdaten ab, sodass knappe Abfertigungsressourcen am Drehkreuz der Airline den kritischsten Flugzeugumläufen zugeordnet werden können. Das Modell wird innerhalb einer Fallstudie angewendet, um die taktischen Kosten einer Airline in Folge von verschiedenen Flugplanstörungen zu minimieren. Die Analyseergebnisse zeigen, dass die optimale Lösung sehr sensitiv in Bezug auf die Art, den Umfang und die Intensität einer Störung reagiert und es folglich keine allgemeingültige optimale Flugplanwiederherstellung für verschiedene Störungen gibt. Umso dringender wird der Einsatz eines flexiblen und effizienten Optimierungsverfahrens empfohlen, welches die komplexen Ressourcenabhängigkeiten innerhalb eines Airline-Netzwerks berücksichtigt und kontextspezifische Lösungen generiert. Um die Effizienz eines solchen Optimierungsverfahrens zu bestimmen, sollte das damit gewonnene Steuerungspotenzial im Vergleich zu aktuell genutzten Verfahren über einen längeren Zeitraum untersucht werden. Aus den in dieser Dissertation analysierten Störungsszenarien kann geschlussfolgert werden, dass die flexible Standplatzvergabe, Passagier-Direkttransporte, beschleunigte Abfertigungsverfahren und die gezielte Verspätung von Abflügen sehr gute Steuerungsoptionen sind und während 95 Prozent der Saison Anwendung finden könnten, um geringe bis mittlere Verspätungen von Einzelflügen effizient aufzulösen. Bei Störungen, die zu hohen Verspätungen im gesamten Airline-Netzwerk führen, ist eine vollständige Integration aller in Betracht gezogenen Steuerungsoptionen erforderlich, um eine erhebliche Reduzierung der taktischen Kosten zu erreichen. Dabei ist insbesondere die Möglichkeit, Ankunfts- und Abflugzeitfenster zu tauschen, von hoher Bedeutung für eine Airline, um die ihr zugewiesenen ATFM-Verspätungen auf die Flugzeugumläufe zu verteilen, welche die geringsten Einschränkungen im weiteren Tagesverlauf aufweisen. Die Berücksichtigung von Unsicherheiten im nachgelagerten Airline-Netzwerk zeigt, dass eine Optimierung auf Basis deterministischer Verspätungskosten die taktischen Kosten für eine Airline überschätzen kann. Die optimale Flugplanwiederherstellung auf Basis stochastischer Verspätungskosten unterscheidet sich deutlich von der deterministischen Lösung und führt zu weniger Passagierumbuchungen am Drehkreuz. Darüber hinaus ist das vorgeschlagene Modell in der Lage, Flugprioritäten und Airline-interne Kostenwerte für ein zugewiesenes ATFM-Zeitfenster zu bestimmen. Die errechneten Flugprioritäten können dabei vertraulich in Form von optimalen Verspätungszeitfenstern pro Flug an das ATFM übermittelt werden, während die Definition von internen Kostenwerten für ATFM-Zeitfenster die Entwicklung von künftigen Handelsmechanismen zwischen Airlines unterstützen kann.:1 Introduction 2 Status Quo on Airline Operations Management 3 Schedule Recovery Optimization Approach with Constrained Resources 4 Implementation and Application 5 Case Study Analysis 6 ConclusionsAir Traffic Flow Management (ATFM) and airlines use different paradigms for the prioritisation of flights. While ATFM regards each flight as individual entity when it controls sector capacity utilization, airlines evaluate each flight as part of an aircraft rotation, crew pairing and passenger itinerary. As a result, ATFM slot regulations during capacity constraints are poorly coordinated with the resource interdependencies within an airline network, such that the aircraft turnaround -- as the connecting element or breaking point between individual flights in an airline schedule -- is the major contributor to primary and reactionary delays in Europe. This dissertation bridges the gap between both paradigms by developing an integrated schedule recovery model that enables airlines to define their optimal flight priorities for schedule disturbances arising from ATFM capacity constraints. These priorities consider constrained airport resources and different methods are studied how to communicate them confidentially to external stakeholders for the usage in collaborative solutions, such as the assignment of reserve resources or ATFM slot swapping. The integrated schedule recovery model is an extension of the Resource-Constrained Project Scheduling Problem and integrates aircraft turnaround operations with existing approaches for aircraft, crew and passenger recovery. The model is supposed to provide tactical decision support for airline operations controllers at look-ahead times of more than two hours prior to a scheduled hub bank. System-inherent uncertainties about process deviations and potential future disruptions are incorporated into the optimization via stochastic turnaround process times and the novel concept of stochastic delay cost functions. These functions estimate the costs of delay propagation and derive flight-specific downstream recovery capacities from historical operations data, such that scarce resources at the hub airport can be allocated to the most critical turnarounds. The model is applied to the case study of a network carrier that aims at minimizing its tactical costs from several disturbance scenarios. The case study analysis reveals that optimal recovery solutions are very sensitive to the type, scope and intensity of a disturbance, such that there is neither a general optimal solution for different types of disturbance nor for disturbances of the same kind. Thus, airlines require a flexible and efficient optimization method, which considers the complex interdependencies among their constrained resources and generates context-specific solutions. To determine the efficiency of such an optimization method, its achieved network resilience should be studied in comparison to current procedures over longer periods of operation. For the sample of analysed scenarios in this dissertation, it can be concluded that stand reallocation, ramp direct services, quick-turnaround procedures and flight retiming are very efficient recovery options when only a few flights obtain low and medium delays, i.e., 95% of the season. For disturbances which induce high delay into the entire airline network, a full integration of all considered recovery options is required to achieve a substantial reduction of tactical costs. Thereby, especially arrival and departure slot swapping are valuable options for the airline to redistribute its assigned ATFM delays onto those aircraft that have the least critical constraints in their downstream rotations. The consideration of uncertainties in the downstream airline network reveals that an optimization based on deterministic delay costs may overestimate the tactical costs for the airline. Optimal recovery solutions based on stochastic delay costs differ significantly from the deterministic approach and are observed to result in less passenger rebooking at the hub airport. Furthermore, the proposed schedule recovery model is able to define flight priorities and internal slot values for the airline. Results show that the priorities can be communicated confidentially to ATFM by using the concept of 'Flight Delay Margins', while slot values may support future inter-airline slot trading mechanisms.:1 Introduction 2 Status Quo on Airline Operations Management 3 Schedule Recovery Optimization Approach with Constrained Resources 4 Implementation and Application 5 Case Study Analysis 6 Conclusion

    Optimisation des trajectoires avion dans l'Atlantique Nord

    Get PDF
    This thesis investigates the ways to improve the air traffic system in the highly congested North Atlantic oceanic airspace (NAT). First, we consider the current system, where aircraft follow predefined NAT tracks. We favor the re-routings between tracks, decreasing congestion in pre-oceanic airspace, and apply stochastic methods of optimization to find a conflict-free flight configuration with reduced separation between aircraft. Second, we simulate trajectory prediction by Wind Networking (WN). While the main source of time prediction errors is the uncertainty in wind forecast, WN permits aircraft to exchange measured winds and adjust their predictions using this recent and accurate information. Third, we study the impact of introducing the free flight concept in NAT. We apply a stochastic method of optimization on data provided by NASA consisting of NAT flights with wind optimal trajectories. The aim is to reduce the number of conflicts on the strategic level, while keeping the trajectories close to the optimal routes. Our computational experiments show that the air traffic situation in NAT can be improved in several different ways, considering new technologies and new trajectory planning concepts.Cette thèse explore des pistes d'amélioration du système de trafic aérien dans l'espace océanique de l'Atlantique Nord (NAT). D'abord, on considère le système actuel, où les avions suivent les rails prédefinis. On favorise les re-routages entre rails, diminuant la congestion dans l'espace continental. On applique des méthodes stochastiques d'optimisation pour trouver une configuration de vols sans conflits avec la séparation reduite entre aéronefs. Ensuite, on simule la planification des trajectoires avec le Wind Networking (WN). La source prinicipale des erreurs dans la prédiction de trajectoires étant l'incertitude dans la prévision du vent, le WN permet aux avions d'échanger leurs vents mesurés afin d'ajuster leurs prédictions. Enfin, on introduit le concept de free-flight dans NAT. Etant donné des trajectoires vent-optimales, on applique une méthode stochastique d'optimisation pour réduire le nombre de conflits au niveau stratégique, tout en conservant les trajectoires proches de leur optimum. Nos résultats numériques mettent en évidence plusieurs pistes pour améliorer le système de trafic aérien dans NAT, en considérant de nouvelles technologies et de nouveaux concepts

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin
    corecore