37,390 research outputs found

    Support an S-duct optimization design study using state-of-the-art Machine Learning techniques

    Get PDF
    Manage the state-of-the-art method and tools in computational engineering design area, including stochastic optimisation, machine learning, computational fluid dynamics, and flexible geometry management algorithmsope

    Shape optimisation using Computational Fluid Dynamics and Evolutionary Algorithms

    Get PDF
    This is the author accepted manuscript.Optimisation of designs using Computational Fluid Dynamics (CFD) are frequently performed across many fields of research, such as the optimisation of an aircraft wing to reduce drag, or to increase the efficiency of a heat exchanger. General optimisation strategies involves altering design variables with a view to improve appropriate objective function(s). Often the objective function(s) are non-linear and multi-modal, and thus polynomial time algorithms for solving such problems may not be available. In such cases, applying Evolutionary Algorithms (EAs - a class of stochastic global optimisation techniques inspired from natural evolution) may locate good solutions within a practical time frame. The traditional CFD design optimisation process is often based on a ‘trial-and-error type approach. Starting from an initial geometry, Computational Aided Design changes are introduced manually based on results from a limited number of design iterations and CFD analyses. The process is usually complex, time-consuming and relies heavily on engineering experience, thus making the overall design procedure inconsistent, i.e. different ‘best’ solutions are obtained from different designers. [...]This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant (reference number: EP/M017915/1) for the University of Exeter’s College of Engineering, Mathematics, and Physical Sciences

    Multi-fidelity probabilistic optimisation of composite structures

    Get PDF
    In this thesis, novel multi-fidelity modelling-based probabilistic optimisation methods are presented to address the computational challenge of stochastic design philosophies applied to complex aircraft composite structures. Novel multi-fidelity formulations developed in this thesis, blending High-Fidelity Model (HFM) and Low-Fidelity Model (LFM), are shown to significantly improve computational efficiency by making use of machine learning techniques, such as Artificial Neural Networks (ANN) and Non-linear Auto-Regressive Gaussian Process (NARGP). To further improve the computational efficiency compared to the conventional probabilistic optimisation methods, a multi-level optimisation approach and a new sampling strategy to collect training data points are incorporated into the multi- fidelity formulations for the first time. In the developed optimisation methods, the HFM covers part of the design space whilst the LFM explores the whole design space to fill the lack of high-fidelity information. This improvement enables the multi-fidelity formulations to request a much smaller number of high-fidelity information causing considerable computational costs. Several engineering examples such as aircraft mono-stringer composite panels are used to demonstrate the accuracy and computational efficiency of the developed methods when used with different reliability and robustness analysis techniques, including Monte Carlo Simulation (MCS), the First-Order Reliability Method (FORM) and the Second-Order Reliability Method (SORM). The composite panels are subjected to mechanical and thermomechanical loads to show the broad range of potential applications. It is shown that the newly developed multi-fidelity probabilistic optimisation methods offer substantial computational time savings ranging from 50 % to 70 % and levels of error typically less than 1 % when compared with traditional probabilistic optimisation methods. Results demonstrate that the newly developed multi-fidelity probabilistic optimisation methods herein provide significant computational benefits and accurately predict the influence of uncertainties associated with design and manufacturing stages. As a result, the presented methods confidently carry out reliability-based and robust design optimisation of large-scale and complex aircraft composite structures.Open Acces

    Stochastic level-set method for shape optimisation

    Full text link
    We present a new method for stochastic shape optimisation of engineering structures. The method generalises an existing deterministic scheme, in which the structure is represented and evolved by a level-set method coupled with mathematical programming. The stochastic element of the algorithm is built on the methods of statistical mechanics and is designed so that the system explores a Boltzmann-Gibbs distribution of structures. In non-convex optimisation problems, the deterministic algorithm can get trapped in local optima: the stochastic generalisation enables sampling of multiple local optima, which aids the search for the globally-optimal structure. The method is demonstrated for several simple geometrical problems, and a proof-of-principle calculation is shown for a simple engineering structure.Comment: 17 pages, 10 fig

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    A stochastic framework for multiscale strength prediction using adaptive discontinuity layout optimisation (ADLO)

    Get PDF
    The prediction of strength properties of matrix-inclusion materials, which in general are random in nature due to their spatial distribution and variation of pores, particles, and matrix-inclusion interfaces, plays an important role with regard to the reliability of materials and structures. The recently developed discontinuity layout optimisation (DLO) [18] and adaptive discontinuity layout optimisation (ADLO) [4], which can be used for determination of strength properties of materials [3, 4] and structures [9], are included in a stochastic framework, using random variables. Therefore different material properties, influencing the overall strength of the matrix-inclusion material (e.g. matrix and inclusion strength, number and distribution of pores/particles) in a considered RVE are assumed to follow certain probability distributions [12]. A sensitivity study for the identification of material parameters showing the largest influence on the strength of the considered matrix-inclusion materials is performed. The obtained results provide first insight into the nature of the reliability of strength properties of matrix-inclusion materials, paving the way to a better understanding and finally improvement of the effective strength properties of matrix-inclusion materials

    Gaussian process hyper-parameter estimation using parallel asymptotically independent Markov sampling

    Get PDF
    Gaussian process emulators of computationally expensive computer codes provide fast statistical approximations to model physical processes. The training of these surrogates depends on the set of design points chosen to run the simulator. Due to computational cost, such training set is bound to be limited and quantifying the resulting uncertainty in the hyper-parameters of the emulator by uni-modal distributions is likely to induce bias. In order to quantify this uncertainty, this paper proposes a computationally efficient sampler based on an extension of Asymptotically Independent Markov Sampling, a recently developed algorithm for Bayesian inference. Structural uncertainty of the emulator is obtained as a by-product of the Bayesian treatment of the hyper-parameters. Additionally, the user can choose to perform stochastic optimisation to sample from a neighbourhood of the Maximum a Posteriori estimate, even in the presence of multimodality. Model uncertainty is also acknowledged through numerical stabilisation measures by including a nugget term in the formulation of the probability model. The efficiency of the proposed sampler is illustrated in examples where multi-modal distributions are encountered. For the purpose of reproducibility, further development, and use in other applications the code used to generate the examples is freely available for download at https://github.com/agarbuno/paims_codesComment: Computational Statistics \& Data Analysis, Volume 103, November 201

    A rewriting grammar for heat exchanger network structure evolution with stream splitting

    Get PDF
    The design of cost optimal heat exchanger networks is a difficult optimisation problem due both to the nonlinear models required and also the combinatorial size of the search space. When stream splitting is considered, the combinatorial aspects make the problem even harder. This paper describes the implementation of a two level evolutionary algorithm based on a string rewriting grammar for the evolution of the heat exchanger network structure. A biological analogue of genotypes and phenotypes is used to describe structures and specific solutions respectively. The top level algorithm evolves structures while the lower level optimises specific structures. The result is a hybrid optimisation procedure which can identify the best structures including stream splitting. Case studies from the literature are presented to demonstrate the capabilities of the novel procedure

    Free Search of real value or how to make computers think

    Get PDF
    This book introduces in detail Free Search - a novel advanced method for search and optimisation. It also deals with some essential questions that have been raised in a strong debate following the publication of this method in journal and conference papers. In the light of this debate, Free Search deserves serious attention, as it appears to be superior to other competitive methods in the context of the experimental results obtained. This superiority is not only quantitative in terms of the actual optimal value found but also qualitative in terms of independence from initial conditions and adaptation capabilities in an unknown environment

    Microstructural enrichment functions based on stochastic Wang tilings

    Full text link
    This paper presents an approach to constructing microstructural enrichment functions to local fields in non-periodic heterogeneous materials with applications in Partition of Unity and Hybrid Finite Element schemes. It is based on a concept of aperiodic tilings by the Wang tiles, designed to produce microstructures morphologically similar to original media and enrichment functions that satisfy the underlying governing equations. An appealing feature of this approach is that the enrichment functions are defined only on a small set of square tiles and extended to larger domains by an inexpensive stochastic tiling algorithm in a non-periodic manner. Feasibility of the proposed methodology is demonstrated on constructions of stress enrichment functions for two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first revie
    corecore