11 research outputs found

    Accelerating Stochastic Recursive and Semi-stochastic Gradient Methods with Adaptive Barzilai-Borwein Step Sizes

    Full text link
    The mini-batch versions of StochAstic Recursive grAdient algoritHm and Semi-Stochastic Gradient Descent method, employed the random Barzilai-Borwein step sizes (shorted as MB-SARAH-RBB and mS2GD-RBB), have surged into prominence through timely step size sequence. Inspired by modern adaptors and variance reduction techniques, we propose two new variant rules in the paper, referred to as RHBB and RHBB+, thereby leading to four algorithms MB-SARAH-RHBB, MB-SARAH-RHBB+, mS2GD-RHBB and mS2GD-RHBB+ respectively. RHBB+ is an enhanced version that additionally incorporates the importance sampling technique. They are aggressive in updates, robust in performance and self-adaptive along iterative periods. We analyze the flexible convergence structures and the corresponding complexity bounds in strongly convex cases. Comprehensive tuning guidance is theoretically provided for reference in practical implementations. Experiments show that the proposed methods consistently outperform the original and various state-of-the-art methods on frequently tested data sets. In particular, tests on the RHBB+ verify the efficacy of applying the importance sampling technique to the step size level. Numerous explorations display the promising scalability of our iterative adaptors.Comment: 44 pages, 33 figure

    Less but Better: Generalization Enhancement of Ordinal Embedding via Distributional Margin

    Full text link
    In the absence of prior knowledge, ordinal embedding methods obtain new representation for items in a low-dimensional Euclidean space via a set of quadruple-wise comparisons. These ordinal comparisons often come from human annotators, and sufficient comparisons induce the success of classical approaches. However, collecting a large number of labeled data is known as a hard task, and most of the existing work pay little attention to the generalization ability with insufficient samples. Meanwhile, recent progress in large margin theory discloses that rather than just maximizing the minimum margin, both the margin mean and variance, which characterize the margin distribution, are more crucial to the overall generalization performance. To address the issue of insufficient training samples, we propose a margin distribution learning paradigm for ordinal embedding, entitled Distributional Margin based Ordinal Embedding (\textit{DMOE}). Precisely, we first define the margin for ordinal embedding problem. Secondly, we formulate a concise objective function which avoids maximizing margin mean and minimizing margin variance directly but exhibits the similar effect. Moreover, an Augmented Lagrange Multiplier based algorithm is customized to seek the optimal solution of \textit{DMOE} effectively. Experimental studies on both simulated and real-world datasets are provided to show the effectiveness of the proposed algorithm.Comment: Accepted by AAAI 201

    Robust Ordinal Embedding from Contaminated Relative Comparisons

    Full text link
    Existing ordinal embedding methods usually follow a two-stage routine: outlier detection is first employed to pick out the inconsistent comparisons; then an embedding is learned from the clean data. However, learning in a multi-stage manner is well-known to suffer from sub-optimal solutions. In this paper, we propose a unified framework to jointly identify the contaminated comparisons and derive reliable embeddings. The merits of our method are three-fold: (1) By virtue of the proposed unified framework, the sub-optimality of traditional methods is largely alleviated; (2) The proposed method is aware of global inconsistency by minimizing a corresponding cost, while traditional methods only involve local inconsistency; (3) Instead of considering the nuclear norm heuristics, we adopt an exact solution for rank equality constraint. Our studies are supported by experiments with both simulated examples and real-world data. The proposed framework provides us a promising tool for robust ordinal embedding from the contaminated comparisons.Comment: Accepted by AAAI 201

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore