118,030 research outputs found

    Dynamic Robust Transmission Expansion Planning

    Full text link
    Recent breakthroughs in Transmission Network Expansion Planning (TNEP) have demonstrated that the use of robust optimization, as opposed to stochastic programming methods, renders the expansion planning problem considering uncertainties computationally tractable for real systems. However, there is still a yet unresolved and challenging problem as regards the resolution of the dynamic TNEP problem (DTNEP), which considers the year-by-year representation of uncertainties and investment decisions in an integrated way. This problem has been considered to be a highly complex and computationally intractable problem, and most research related to this topic focuses on very small case studies or used heuristic methods and has lead most studies about TNEP in the technical literature to take a wide spectrum of simplifying assumptions. In this paper an adaptive robust transmission network expansion planning formulation is proposed for keeping the full dynamic complexity of the problem. The method overcomes the problem size limitations and computational intractability associated with dynamic TNEP for realistic cases. Numerical results from an illustrative example and the IEEE 118-bus system are presented and discussed, demonstrating the benefits of this dynamic TNEP approach with respect to classical methods.Comment: 10 pages, 2 figures. This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2016.2629266, IEEE Transactions on Power Systems 201

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Modelling network travel time reliability under stochastic demand

    Get PDF
    A technique is proposed for estimating the probability distribution of total network travel time, in the light of normal day-to-day variations in the travel demand matrix over a road traffic network. A solution method is proposed, based on a single run of a standard traffic assignment model, which operates in two stages. In stage one, moments of the total travel time distribution are computed by an analytic method, based on the multivariate moments of the link flow vector. In stage two, a flexible family of density functions is fitted to these moments. It is discussed how the resulting distribution may in practice be used to characterise unreliability. Illustrative numerical tests are reported on a simple network, where the method is seen to provide a means for identifying sensitive or vulnerable links, and for examining the impact on network reliability of changes to link capacities. Computational considerations for large networks, and directions for further research, are discussed
    • …
    corecore