33,937 research outputs found

    Control of Complex Dynamic Systems by Neural Networks

    Get PDF
    This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations

    Diffusion Maps Kalman Filter for a Class of Systems with Gradient Flows

    Full text link
    In this paper, we propose a non-parametric method for state estimation of high-dimensional nonlinear stochastic dynamical systems, which evolve according to gradient flows with isotropic diffusion. We combine diffusion maps, a manifold learning technique, with a linear Kalman filter and with concepts from Koopman operator theory. More concretely, using diffusion maps, we construct data-driven virtual state coordinates, which linearize the system model. Based on these coordinates, we devise a data-driven framework for state estimation using the Kalman filter. We demonstrate the strengths of our method with respect to both parametric and non-parametric algorithms in three tracking problems. In particular, applying the approach to actual recordings of hippocampal neural activity in rodents directly yields a representation of the position of the animals. We show that the proposed method outperforms competing non-parametric algorithms in the examined stochastic problem formulations. Additionally, we obtain results comparable to classical parametric algorithms, which, in contrast to our method, are equipped with model knowledge.Comment: 15 pages, 12 figures, submitted to IEEE TS

    Noisy Gradient Descent Bit-Flip Decoding for LDPC Codes

    Get PDF
    A modified Gradient Descent Bit Flipping (GDBF) algorithm is proposed for decoding Low Density Parity Check (LDPC) codes on the binary-input additive white Gaussian noise channel. The new algorithm, called Noisy GDBF (NGDBF), introduces a random perturbation into each symbol metric at each iteration. The noise perturbation allows the algorithm to escape from undesirable local maxima, resulting in improved performance. A combination of heuristic improvements to the algorithm are proposed and evaluated. When the proposed heuristics are applied, NGDBF performs better than any previously reported GDBF variant, and comes within 0.5 dB of the belief propagation algorithm for several tested codes. Unlike other previous GDBF algorithms that provide an escape from local maxima, the proposed algorithm uses only local, fully parallelizable operations and does not require computing a global objective function or a sort over symbol metrics, making it highly efficient in comparison. The proposed NGDBF algorithm requires channel state information which must be obtained from a signal to noise ratio (SNR) estimator. Architectural details are presented for implementing the NGDBF algorithm. Complexity analysis and optimizations are also discussed.Comment: 16 pages, 22 figures, 2 table
    • …
    corecore