48,651 research outputs found

    Stochastic Search in Data-Based Modelling of Dynamic Systems

    Get PDF
    This paper examines the application of stochastic search techniques for the solution of two typical problems in mod- elling nonlinear systems using a multi-modelling approach: interpolation function determination and linear model structure determination. Two candidate stochastic search techniques are employed, genetic algorithms and swarm intelligence, which show dierent advantages for each of the problems considered

    Stochastic Multilevel Programming with a Hybrid Intelligent Algorithm

    Get PDF
    A framework of stochastic multilevel programming is proposed for modelling decentralized decision-making problem in stochastic environment. According to different decision criteria, the stochastic decentralized decision-making problem is formulated as expected value multilevel programming, and chanceconstrained multilevel programming. In order to solve the proposed stochastic multilevel programming models for the Stackelberg-Nash equilibriums, genetic algorithms, neural networks and stochastic simulation are integrated to produce a hybrid intelligent algorithm. Finally, two numerical examples are provided to illustrate the effectiveness of the hybrid intelligent algorithm

    Parameter Identification of a Fed-Batch Cultivation of S. Cerevisiae using Genetic Algorithms

    Get PDF
    Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.* This work is partly supported by the National Science Fund Project MI – 1505/2005

    Project scheduling under uncertainty using fuzzy modelling and solving techniques

    Get PDF
    In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy project scheduling is one of the approaches that deal with uncertainties in project scheduling problem. In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Constrained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters. We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP) and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within the framework of a French industrial project called Helimaintenance

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Free Search of real value or how to make computers think

    Get PDF
    This book introduces in detail Free Search - a novel advanced method for search and optimisation. It also deals with some essential questions that have been raised in a strong debate following the publication of this method in journal and conference papers. In the light of this debate, Free Search deserves serious attention, as it appears to be superior to other competitive methods in the context of the experimental results obtained. This superiority is not only quantitative in terms of the actual optimal value found but also qualitative in terms of independence from initial conditions and adaptation capabilities in an unknown environment

    Stochastic simulation framework for the Limit Order Book using liquidity motivated agents

    Full text link
    In this paper we develop a new form of agent-based model for limit order books based on heterogeneous trading agents, whose motivations are liquidity driven. These agents are abstractions of real market participants, expressed in a stochastic model framework. We develop an efficient way to perform statistical calibration of the model parameters on Level 2 limit order book data from Chi-X, based on a combination of indirect inference and multi-objective optimisation. We then demonstrate how such an agent-based modelling framework can be of use in testing exchange regulations, as well as informing brokerage decisions and other trading based scenarios
    corecore