282 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationMultiple-input and multiple-output (MIMO) technique has emerged as a key feature for future generations of wireless communication systems. It increases the channel capacity proportionate to the minimum number of transmit and receive antennas. This dissertation addresses the receiver design for high-rate MIMO communications in at fading environments. The emphasis of the thesis is on the cases where channel state information (CSI) is not available and thus, clever channel estimation algorithms have to be developed to bene t from the maximum available channel capacity. The thesis makes four distinct novel contributions. First, we note that the conventional MCMC-MIMO detector presented in the prior work may deteriorate as SNR increases. We suggest and show through computer simulations that this problem to a great extent can be solved by initializing the MCMC detector with regulated states which are found through linear detectors. We also introduce the novel concept of staged-MCMC in a turbo receiver, where we start the detection process at a lower complexity and increase complexity only if the data could not be correctly detected in the present stage of data detection. Second, we note that in high-rate MIMO communications, joint data detection and channel estimation poses new challenges when a turbo loop is used to improve the quality of the estimated channel and the detected data. Erroneous detected data may propagate in the turbo loop and, thus, degrade the performance of the receiver signi cantly. This is referred to as error propagation. We propose a novel receiver that decorrelates channel estimation and the detected data to avoid the detrimental e ect of error propagation. Third, the dissertation studies joint channel estimation and MIMO detection over a continuously time-varying channel and proposes a new dual-layer channel estimator to overcome the complexity of optimal channel estimators. The proposed dual-layer channel estimator reduces the complexity of the MIMO detector with optimal channel estimator by an order of magnitude at a cost of a negligible performance degradation, on the order of 0.1 to 0.2 dB. The fourth contribution of this dissertation is to note that the Wiener ltering techniques that are discussed in this dissertation and elsewhere in the literature assume that channel (time-varying) statistics are available. We propose a new method that estimates such statistics using the coarse channel estimates obtained through pilot symbols. The dissertation also makes an additional contribution revealing di erences between the MCMC-MIMO and LMMSE-MIMO detectors. We nd that under the realistic condition where CSI has to be estimated, hence the available channel estimate will be noisy, the MCMC-MIMO detector outperforms the LMMSE-MIMO detector with a signi cant margin

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation addresses several key challenges in multiple-antenna communications, including information-theoretical analysis of channel capacity, capacity-achieving signaling design, and practical statistical detection algorithms. The first part of the thesis studies the capacity limits of multiple-input multiple-output (MIMO) multiple access channel (MAC) via virtual representation (VR) model. The VR model captures the physical scattering environment via channel gains in the angular domain, and hence is a realistic MIMO channel model that includes many existing channel models as special cases. This study provides analytical characterization of the optimal input distribution that achieves the sum-capacity of MAC-VR. It also investigates the optimality of beamforming, which is a simple scalar coding strategy desirable in practice. For temporally correlated channels, beamforming codebook designs are proposed that can efficiently exploit channel correlation. The second part of the thesis focuses on statistical detection for time-varying frequency-selective channels. The proposed statistical detectors are developed based on Markov Chain Monte Carlo (MCMC) techniques. The complexity of such detectors grows linearly in system dimensions, which renders them applicable to inter-symbol-interference (ISI) channels with long delay spread, for which the traditional trellis-based detectors fail due to prohibitive complexity. The proposed MCMC detectors provide substantial gain over the de facto turbo minimum-mean square-error (MMSE) detector for both synthetic channel and underwater acoustic (UWA) channels. The effectiveness of the proposed MCMC detectors is successfully validated through experimental data collected from naval at-sea experiments

    Achieving Energy-Efficient Uplink URLLC with MIMO-Aided Grant-Free Access

    Full text link
    The optimal design of the energy-efficient multiple-input multiple-output (MIMO) aided uplink ultra-reliable low-latency communications (URLLC) system is an important but unsolved problem. For such a system, we propose a novel absorbing-Markov-chain-based analysis framework to shed light on the puzzling relationship between the delay and reliability, as well as to quantify the system energy efficiency. We derive the transition probabilities of the absorbing Markov chain considering the Rayleigh fading, the channel estimation error, the zero-forcing multi-user-detection (ZF-MUD), the grant-free access, the ACK-enabled retransmissions within the delay bound and the interactions among these technical ingredients. Then, the delay-constrained reliability and the system energy efficiency are derived based on the absorbing Markov chain formulated. Finally, we study the optimal number of user equipments (UEs) and the optimal number of receiving antennas that maximize the system energy efficiency, while satisfying the reliability and latency requirements of URLLC simultaneously. Simulation results demonstrate the accuracy of our theoretical analysis and the effectiveness of massive MIMO in supporting large-scale URLLC systems.Comment: 14 pages, 9 figures, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 202

    Reduced Complexity Sequential Monte Carlo Algorithms for Blind Receivers

    Get PDF
    Monte Carlo algorithms can be used to estimate the state of a system given relative observations. In this dissertation, these algorithms are applied to physical layer communications system models to estimate channel state information, to obtain soft information about transmitted symbols or multiple access interference, or to obtain estimates of all of these by joint estimation. Initially, we develop and analyze a multiple access technique utilizing mutually orthogonal complementary sets (MOCS) of sequences. These codes deliberately introduce inter-chip interference, which is naturally eliminated during processing at the receiver. However, channel impairments can destroy their orthogonality properties and additional processing becomes necessary. We utilize Monte Carlo algorithms to perform joint channel and symbol estimation for systems utilizing MOCS sequences as spreading codes. We apply Rao-Blackwellization to reduce the required number of particles. However, dense signaling constellations, multiuser environments, and the interchannel interference introduced by the spreading codes all increase the dimensionality of the symbol state space significantly. A full maximum likelihood solution is computationally expensive and generally not practical. However, obtaining the optimum solution is critical, and looking at only a part of the symbol space is generally not a good solution. We have sought algorithms that would guarantee that the correct transmitted symbol is considered, while only sampling a portion of the full symbol space. The performance of the proposed method is comparable to the Maximum Likelihood (ML) algorithm. While the computational complexity of ML increases exponentially with the dimensionality of the problem, the complexity of our approach increases only quadratically. Markovian structures such as the one imposed by MOCS spreading sequences can be seen in other physical layer structures as well. We have applied this partitioning approach with some modification to blind equalization of frequency selective fading channel and to multiple-input multiple output receivers that track channel changes. Additionally, we develop a method that obtains a metric for quantifying the convergence rate of Monte Carlo algorithms. Our approach yields an eigenvalue based method that is useful in identifying sources of slow convergence and estimation inaccuracy.Ph.D.Committee Chair: Douglas B. Williams; Committee Member: Brani Vidakovic; Committee Member: G. Tong zhou; Committee Member: Gordon Stuber; Committee Member: James H. McClella
    • …
    corecore