51,366 research outputs found

    Stochastic Gradient Trees

    Get PDF
    We present an algorithm for learning decision trees using stochastic gradient information as the source of supervision. In contrast to previous approaches to gradient-based tree learning, our method operates in the incremental learning setting rather than the batch learning setting, and does not make use of soft splits or require the construction of a new tree for every update. We demonstrate how one can apply these decision trees to different problems by changing only the loss function, using classification, regression, and multi-instance learning as example applications. In the experimental evaluation, our method performs similarly to standard incremental classification trees, outperforms state of the art incremental regression trees, and achieves comparable performance with batch multi-instance learning methods.Comment: Accepted at ACML 201

    Infinitesimal gradient boosting

    Full text link
    We define infinitesimal gradient boosting as a limit of the popular tree-based gradient boosting algorithm from machine learning. The limit is considered in the vanishing-learning-rate asymptotic, that is when the learning rate tends to zero and the number of gradient trees is rescaled accordingly. For this purpose, we introduce a new class of randomized regression trees bridging totally randomized trees and Extra Trees and using a softmax distribution for binary splitting. Our main result is the convergence of the associated stochastic algorithm and the characterization of the limiting procedure as the unique solution of a nonlinear ordinary differential equation in a infinite dimensional function space. Infinitesimal gradient boosting defines a smooth path in the space of continuous functions along which the training error decreases, the residuals remain centered and the total variation is well controlled.Comment: 51 pages, 5 figure

    Small area estimation of the homeless in Los Angeles: An application of cost-sensitive stochastic gradient boosting

    Get PDF
    In many metropolitan areas efforts are made to count the homeless to ensure proper provision of social services. Some areas are very large, which makes spatial sampling a viable alternative to an enumeration of the entire terrain. Counts are observed in sampled regions but must be imputed in unvisited areas. Along with the imputation process, the costs of underestimating and overestimating may be different. For example, if precise estimation in areas with large homeless c ounts is critical, then underestimation should be penalized more than overestimation in the loss function. We analyze data from the 2004--2005 Los Angeles County homeless study using an augmentation of L1L_1 stochastic gradient boosting that can weight overestimates and underestimates asymmetrically. We discuss our choice to utilize stochastic gradient boosting over other function estimation procedures. In-sample fitted and out-of-sample imputed values, as well as relationships between the response and predictors, are analyzed for various cost functions. Practical usage and policy implications of these results are discussed briefly.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS328 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore