35 research outputs found

    Enhanced Grey Wolf Optimization based Hyper-parameter optimized Convolution Neural Network for Kidney Image Classification

    Get PDF
    Over the last few years, Convolution Neural Networks (CNN) have shown dominant performance over real world applications due to their ability to find good solutions and deal with image data. However their performance is highly dependent on the network architecture and methods for optimizing their hyper parameters especially number and size of filters. Designing a good CNN architecture requires human expertise and domain knowledge. So, it is difficult in CNN to find sufficient number and size of filters for classification problems. The standard GWO algorithm used for any optimization purpose suffers from some issues such as slow convergence speed, trapping in local minima and unable to maintain balance between exploration and exploitation. In order to have proper balance between these phases, two modifications in GWO are introduced in this paper. A technique for finding optimum CNN architecture using methods based on Enhanced Grey Wolf Optimization (E-GWO) is proposed. The paper presents optimization of hyper parameters (numbers and size of filters in convolution layer) of CNN using E-GWO to improve the performance of the model. Kidney ultrasound images dataset collected from ultrasound centre is used to evaluate the performance of the proposed algorithm. Experimental results showed that optimization of CNN with E-GWO outperformed CNN optimized with traditional GA, PSO and GWO and conventional CNN yielding 97.01% accuracy. At last, the obtained results are statistically validated using t-test

    Continual deep learning via progressive learning

    Get PDF
    Machine learning is one of several approaches to artificial intelligence. It allows us to build machines that can learn from experience as opposed to being explicitly programmed. Current machine learning formulations are mostly designed for learning and performing a particular task from a tabula rasa using data available for that task. For machine learning to converge to artificial intelligence, in addition to other desiderata, it must be in a state of continual learning, i.e., have the ability to be in a continuous learning process, such that when a new task is presented, the system can leverage prior knowledge from prior tasks, in learning and performing this new task, and augment the prior knowledge with the newly acquired knowledge without having a significant adverse effect on the prior knowledge. Continual learning is key to advancing machine learning and artificial intelligence. Deep learning is a powerful general-purpose approach to machine learning that is able to solve numerous and various tasks with minimal modification. Deep learning extends machine learning, and specially neural networks, to learn multiple levels of distributed representations together with the required mapping function into a single composite function. The emergence of deep learning and neural networks as a generic approach to machine learning, coupled with their ability to learn versatile hierarchical representations, has paved the way for continual learning. The main aim of this thesis is the study and development of a structured approach to continual learning, leveraging the success of deep learning and neural networks. This thesis studies the application of deep learning to a number of supervised learning tasks, and in particular, classification tasks in machine perception, e.g., image recognition, automatic speech recognition, and speech emotion recognition. The relation between the systems developed for these tasks is investigated to illuminate the layer-wise relevance of features in deep networks trained for these tasks via transfer learning, and these independent systems are unified into continual learning systems. The main contribution of this thesis is the construction and formulation of a deep learning framework, denoted progressive learning, that allows a holistic and systematic approach to continual learning. Progressive learning comprises a number of procedures that address the continual learning desiderata. It is shown that, when tasks are related, progressive learning leads to faster learning that converges to better generalization performance using less amounts of data and a smaller number of dedicated parameters, for the tasks studied in this thesis, by accumulating and leveraging knowledge learned across tasks in a continuous manner. It is envisioned that progressive learning is a step towards a fully general continual learning framework

    Automatic Recognition of Non-Verbal Acoustic Communication Events With Neural Networks

    Get PDF
    Non-verbal acoustic communication is of high importance to humans and animals: Infants use the voice as a primary communication tool. Animals of all kinds employ acoustic communication, such as chimpanzees, which use pant-hoot vocalizations for long-distance communication. Many applications require the assessment of such communication for a variety of analysis goals. Computational systems can support these areas through automatization of the assessment process. This is of particular importance in monitoring scenarios over large spatial and time scales, which are infeasible to perform manually. Algorithms for sound recognition have traditionally been based on conventional machine learning approaches. In recent years, so-called representation learning approaches have gained increasing popularity. This particularly includes deep learning approaches that feed raw data to deep neural networks. However, there remain open challenges in applying these approaches to automatic recognition of non-verbal acoustic communication events, such as compensating for small data set sizes. The leading question of this thesis is: How can we apply deep learning more effectively to automatic recognition of non-verbal acoustic communication events? The target communication types were specifically (1) infant vocalizations and (2) chimpanzee long-distance calls. This thesis comprises four studies that investigated aspects of this question: Study (A) investigated the assessment of infant vocalizations by laypersons. The central goal was to derive an infant vocalization classification scheme based on the laypersons' perception. The study method was based on the Nijmegen Protocol, where participants rated vocalization recordings through various items, such as affective ratings and class labels. Results showed a strong association between valence ratings and class labels, which was used to derive a classification scheme. Study (B) was a comparative study on various neural network types for the automatic classification of infant vocalizations. The goal was to determine the best performing network type among the currently most prevailing ones, while considering the influence of their architectural configuration. Results showed that convolutional neural networks outperformed recurrent neural networks and that the choice of the frequency and time aggregation layer inside the network is the most important architectural choice. Study (C) was a detailed investigation on computer vision-like convolutional neural networks for infant vocalization classification. The goal was to determine the most important architectural properties for increasing classification performance. Results confirmed the importance of the aggregation layer and additionally identified the input size of the fully-connected layers and the accumulated receptive field to be of major importance. Study (D) was an investigation on compensating class imbalance for chimpanzee call detection in naturalistic long-term recordings. The goal was to determine which compensation method among a selected group improved performance the most for a deep learning system. Results showed that spectrogram denoising was most effective, while methods for compensating relative imbalance either retained or decreased performance.:1. Introduction 2. Foundations in Automatic Recognition of Acoustic Communication 3. State of Research 4. Study (A): Investigation of the Assessment of Infant Vocalizations by Laypersons 5. Study (B): Comparison of Neural Network Types for Automatic Classification of Infant Vocalizations 6. Study (C): Detailed Investigation of CNNs for Automatic Classification of Infant Vocalizations 7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee Detection With Convolutional Recurrent Neural Networks 8. Conclusion and Collected Discussion 9. AppendixNonverbale akustische Kommunikation ist für Menschen und Tiere von großer Bedeutung: Säuglinge nutzen die Stimme als primäres Kommunikationsmittel. Schimpanse verwenden sogenannte 'Pant-hoots' und Trommeln zur Kommunikation über weite Entfernungen. Viele Anwendungen erfordern die Beurteilung solcher Kommunikation für verschiedenste Analyseziele. Algorithmen können solche Bereiche durch die Automatisierung der Beurteilung unterstützen. Dies ist besonders wichtig beim Monitoring langer Zeitspannen oder großer Gebiete, welche manuell nicht durchführbar sind. Algorithmen zur Geräuscherkennung verwendeten bisher größtenteils konventionelle Ansätzen des maschinellen Lernens. In den letzten Jahren hat eine alternative Herangehensweise Popularität gewonnen, das sogenannte Representation Learning. Dazu gehört insbesondere Deep Learning, bei dem Rohdaten in tiefe neuronale Netze eingespeist werden. Jedoch gibt es bei der Anwendung dieser Ansätze auf die automatische Erkennung von nonverbaler akustischer Kommunikation ungelöste Herausforderungen, wie z.B. die Kompensation der relativ kleinen Datenmengen. Die Leitfrage dieser Arbeit ist: Wie können wir Deep Learning effektiver zur automatischen Erkennung nonverbaler akustischer Kommunikation verwenden? Diese Arbeit konzentriert sich speziell auf zwei Kommunikationsarten: (1) vokale Laute von Säuglingen (2) Langstreckenrufe von Schimpansen. Diese Arbeit umfasst vier Studien, welche Aspekte dieser Frage untersuchen: Studie (A) untersuchte die Beurteilung von Säuglingslauten durch Laien. Zentrales Ziel war die Ableitung eines Klassifikationsschemas für Säuglingslaute auf der Grundlage der Wahrnehmung von Laien. Die Untersuchungsmethode basierte auf dem sogenannten Nijmegen-Protokoll. Hier beurteilten die Teilnehmenden Lautaufnahmen von Säuglingen anhand verschiedener Variablen, wie z.B. affektive Bewertungen und Klassenbezeichnungen. Die Ergebnisse zeigten eine starke Assoziation zwischen Valenzbewertungen und Klassenbezeichnungen, die zur Ableitung eines Klassifikationsschemas verwendet wurde. Studie (B) war eine vergleichende Studie verschiedener Typen neuronaler Netzwerke für die automatische Klassifizierung von Säuglingslauten. Ziel war es, den leistungsfähigsten Netzwerktyp unter den momentan verbreitetsten Typen zu ermitteln. Hierbei wurde der Einfluss verschiedener architektonischer Konfigurationen innerhalb der Typen berücksichtigt. Die Ergebnisse zeigten, dass Convolutional Neural Networks eine höhere Performance als Recurrent Neural Networks erreichten. Außerdem wurde gezeigt, dass die Wahl der Frequenz- und Zeitaggregationsschicht die wichtigste architektonische Entscheidung ist. Studie (C) war eine detaillierte Untersuchung von Computer Vision-ähnlichen Convolutional Neural Networks für die Klassifizierung von Säuglingslauten. Ziel war es, die wichtigsten architektonischen Eigenschaften zur Steigerung der Erkennungsperformance zu bestimmen. Die Ergebnisse bestätigten die Bedeutung der Aggregationsschicht. Zusätzlich Eigenschaften, die als wichtig identifiziert wurden, waren die Eingangsgröße der vollständig verbundenen Schichten und das akkumulierte rezeptive Feld. Studie (D) war eine Untersuchung zur Kompensation der Klassenimbalance zur Erkennung von Schimpansenrufen in Langzeitaufnahmen. Ziel war es, herauszufinden, welche Kompensationsmethode aus einer Menge ausgewählter Methoden die Performance eines Deep Learning Systems am meisten verbessert. Die Ergebnisse zeigten, dass Spektrogrammentrauschen am effektivsten war, während Methoden zur Kompensation des relativen Ungleichgewichts die Performance entweder gleichhielten oder verringerten.:1. Introduction 2. Foundations in Automatic Recognition of Acoustic Communication 3. State of Research 4. Study (A): Investigation of the Assessment of Infant Vocalizations by Laypersons 5. Study (B): Comparison of Neural Network Types for Automatic Classification of Infant Vocalizations 6. Study (C): Detailed Investigation of CNNs for Automatic Classification of Infant Vocalizations 7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee Detection With Convolutional Recurrent Neural Networks 8. Conclusion and Collected Discussion 9. Appendi

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    Sentiment Analysis for Social Media

    Get PDF
    Sentiment analysis is a branch of natural language processing concerned with the study of the intensity of the emotions expressed in a piece of text. The automated analysis of the multitude of messages delivered through social media is one of the hottest research fields, both in academy and in industry, due to its extremely high potential applicability in many different domains. This Special Issue describes both technological contributions to the field, mostly based on deep learning techniques, and specific applications in areas like health insurance, gender classification, recommender systems, and cyber aggression detection

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Proceedings of the 8th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2023)

    Get PDF
    This volume gathers the papers presented at the Detection and Classification of Acoustic Scenes and Events 2023 Workshop (DCASE2023), Tampere, Finland, during 21–22 September 2023
    corecore