52 research outputs found

    The Impact of Antenna Height Difference on the Performance of Downlink Cellular Networks

    Full text link
    Capable of significantly reducing cell size and enhancing spatial reuse, network densification is shown to be one of the most dominant approaches to expand network capacity. Due to the scarcity of available spectrum resources, nevertheless, the over-deployment of network infrastructures, e.g., cellular base stations (BSs), would strengthen the inter-cell interference as well, thus in turn deteriorating the system performance. On this account, we investigate the performance of downlink cellular networks in terms of user coverage probability (CP) and network spatial throughput (ST), aiming to shed light on the limitation of network densification. Notably, it is shown that both CP and ST would be degraded and even diminish to be zero when BS density is sufficiently large, provided that practical antenna height difference (AHD) between BSs and users is involved to characterize pathloss. Moreover, the results also reveal that the increase of network ST is at the expense of the degradation of CP. Therefore, to balance the tradeoff between user and network performance, we further study the critical density, under which ST could be maximized under the CP constraint. Through a special case study, it follows that the critical density is inversely proportional to the square of AHD. The results in this work could provide helpful guideline towards the application of network densification in the next-generation wireless networks.Comment: conference submission - Mar. 201

    Drone Mobile Networks: Performance Analysis Under 3D Tractable Mobility Models

    Get PDF
    Reliable wireless communication networks are a significant but challenging mission for post-disaster areas and hotspots in the era of information. However, with the maturity of unmanned aerial vehicle (UAV) technology, drone mobile networks have attracted considerable attention as a prominent solution for facilitating critical communications. This paper provides a system-level analysis for drone mobile networks on a finite three-dimensional (3D) space. Our aim is to explore the fundamental performance limits of drone mobile networks taking into account practical considerations. Most existing works on mobile drone networks use simplified mobility models (e.g., fixed height), but the movement of the drones in practice is significantly more complicated, which leads to difficulties in analyzing the performance of the drone mobile networks. Hence, to tackle this problem, we propose a stochastic geometry-based framework with a number of different mobility models including a random Brownian motion approach. The proposed framework allows to circumvent the extremely complex reality model and obtain upper and lower performance bounds for drone networks in practice. Also, we explicitly consider certain constraints, such as the small-scale fading characteristics relying on line-of-sight (LOS) and non line-of-sight (NLOS) propagation, and multi-antenna operations. The validity of the mathematical findings is verified via Monte-Carlo (MC) simulations for various network settings. In addition, the results reveal some design guidelines and important trends for the practical deployment of drone networks
    • …
    corecore