784 research outputs found

    Stochastic extraction of elongated curvilinear structures with applications

    Get PDF
    The automatic extraction of elongated curvilinear structures (CLSs) is an important task in various image processing applications, including numerous remote sensing, and biometrical and medical problems. To address this task, we develop a stochastic approach that relies on a fixed-grid, localized Radon transform for line segment extraction and a conditional random field model to incorporate local interactions and refine the extracted CLSs. We propose several different energy data terms, the appropriate choice of which allows us to process images with different noise and geometry properties. The contribution of this paper is the design of a flexible and robust elongated CLS extraction framework that is comparatively fast due to the use of a fixed-grid configuration and fast deterministic Radon-based line detector. We present several different applications of the developed approach, namely: 1) CLS extraction in mammographic images; 2) road networks extraction from optical remotely sensed images; and 3) line extraction from palmprint images. The experimental results demonstrate that the method is fairly robust to CLS curvature and can accurately extract blurred and low-contrast elongated CLS

    Delineation of line patterns in images using B-COSFIRE filters

    Get PDF
    Delineation of line patterns in images is a basic step required in various applications such as blood vessel detection in medical images, segmentation of rivers or roads in aerial images, detection of cracks in walls or pavements, etc. In this paper we present trainable B-COSFIRE filters, which are a model of some neurons in area V1 of the primary visual cortex, and apply it to the delineation of line patterns in different kinds of images. B-COSFIRE filters are trainable as their selectivity is determined in an automatic configuration process given a prototype pattern of interest. They are configurable to detect any preferred line structure (e.g. segments, corners, cross-overs, etc.), so usable for automatic data representation learning. We carried out experiments on two data sets, namely a line-network data set from INRIA and a data set of retinal fundus images named IOSTAR. The results that we achieved confirm the robustness of the proposed approach and its effectiveness in the delineation of line structures in different kinds of images.Comment: International Work Conference on Bioinspired Intelligence, July 10-13, 201

    Fuzzy-Logic Based Detection and Characterization of Junctions and Terminations in Fluorescence Microscopy Images of Neurons

    Get PDF
    Digital reconstruction of neuronal cell morphology is an important step toward understanding the functionality of neuronal networks. Neurons are tree-like structures whose description depends critically on the junctions and terminations, collectively called critical points, making the correct localization and identification of these points a crucial task in the reconstruction process. Here we present a fully automatic method for the integrated detection and characterization of both types of critical points in fluorescence microscopy images of neurons. In view of the majority of our current studies, which are based on cultured neurons, we describe and evaluate the method for application to two-dimensional (2D) images. The method relies on directional filtering and angular profile analysis to extract essential features about the main streamlines at any location in an image, and employs fuzzy logic with carefully designed rules to reason about the feature values in order to make well-informed decisions about the presence of a critical point and its type. Experiments on simulated as well as real images of neurons demonstrate the detection performance of our method. A comparison with the output of two existing neuron reconstruction methods reveals that our method achieves substantially higher detection rates and could provide beneficial information to the reconstruction process

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    An index based road feature extraction from LANDSAT-8 OLI images

    Get PDF
    Road feature extraction from the remote sensing images is an arduous task and has a significant role in various applications of urban planning, updating the maps, traffic management, etc. In this paper, a new band combination (B652) to form a road index (RI) from OLI multispectral bands based on the spectral reflectance of asphalt, is presented for road feature extraction. The B652 is converted to road index by normalization. The morphological operators (top-hat or bottom-hat) uses on RI to enhance the roads. To sharpen the edges and for better discrimination of features, shock square filter (SSF), is proposed. Then, an iterative adaptive threshold (IAT) based online search with variational min-max and Markov random fields (MRF) model are used on the SSF image to segment the roads and non-roads. The roads are extracting by using the rules based on the connected component analysis. IAT and MRF model segmentation methods prove the proposed index (RI) able to extract road features productively. The proposed methodology is a combination of saturation based adaptive thresholding and morphology (SATM), and saturation based MRF (SMRF), applied to OLI images of several urban cities of India, producing the satisfactory results. The experimental results with the quantitative analysis presented in the paper

    Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging

    Get PDF
    Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well-defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations U:Rd⋊Sd−1→RU:\mathbb{R}^{d} \rtimes S^{d-1} \to \mathbb{R} defined on the extended space of positions and orientations, which we relate to data on the roto-translation group SE(d)SE(d), d=2,3d=2,3. This allows to define multiple frames per position, one per orientation. We compute these frames via exponential curve fits in the extended data representations in SE(d)SE(d). These curve fits minimize first or second order variational problems which are solved by spectral decomposition of, respectively, a structure tensor or Hessian of data on SE(d)SE(d). We include these gauge frames in differential invariants and crossing preserving PDE-flows acting on extended data representation UU and we show their advantage compared to the standard left-invariant frame on SE(d)SE(d). Applications include crossing-preserving filtering and improved segmentations of the vascular tree in retinal images, and new 3D extensions of coherence-enhancing diffusion via invertible orientation scores

    Image Matching based on Curvilinear Regions

    Get PDF
    • …
    corecore